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Abstract—In this paper, the 2D-3D Collaborative Tracking
(23CT) system for tracking rigid bodies in the context of mobile
robotic manipulation is presented. The tracking approach is
based on a collaborative tracking framework developed around
two trackers: a 2D multi-class region of interest tracker and a 3D
model-based tracker, where both trackers benefit from each other.
The goal of this work is to improve the motion planning and the
object handling capabilities of service robotics platforms that
operate in complex and cluttered household environments and
perform highly dexterous tasks such as mobile pick and place,
pouring, flipping (of pancakes), etc. For performance evaluation,
the proposed system was compared with a marker-based tracking
system. The 23CT approach is using a visual data stream supplied
by an RGB-D sensor, such as the MS Kinectr.

I. INTRODUCTION

One important task for service robots such as the PR2
(Personal Robot 2) [1], or the FRIEND (Functional Robot
with dexterous arm and user-frIENdly interface for Disable
people) [2] that operate in household environments, is to
reliably handle common household objects (such as plates,
mugs, pots, bottles, boxes) usually placed in heavy cluttered
scenes. An example scene which falls in the above category
can be seen in Fig. 1, where different objects placed on a table
in front of a PR2 robot are to be handled.

Currently, a commonly used approach in many mobile
manipulation scenarios is to recognize the objects of interest
and obstacles in the scene, calculate the poses of the objects
and perform the manipulation actions [3]. Throughout the
manipulation procedure, there is usually no visual information
available with respect to the dynamics of the scene, that is, to
the motion of the grasped objects and to the obstacles. This
increases the risk of failures if the state of the environment
changes, namely, if the poses of the objects, as well as of
different obstacles present in the scene, vary.

Although object tracking is a well-developed research area
in the computer vision community, its application to mobile
manipulation, and robotics in general, is rather unexplored.
Recently, Krainin et al. [4], [5], applied the concept of object
tracking during manipulation for building online 3D models of
objects. Ueda et al. implemented a model-based tracker using
a particle filtering algorithm and the KLD-sampling method
which is available in Point Clouds Library [6]. Related to
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Fig. 1. Example tabletop scene consisting of the objects to be tracked during
mobile manipulation.

robotics, a hand tracking and modeling approach has been
proposed in various works [7], [8].

Teichman and Thrun [9] proposed a semi-supervised ap-
proach to the problem of track classification in dense 3D
range data. The method uses a boosting classification system
on top of a series of 2D and 3D features, such as Spin images,
Histogram of Oriented Gradients (HOG) and the object’s
oriented bounding box size.

A novel paradigm for training a binary classifier in the
context of shape following has been proposed in [10]. The
learning process is guided by positive (P) and negative (N)
constraints which restrict the labeling of the dataset. P-N
learning evaluates the classifier on unlabeled data, identi-
fies examples that have been classified in contradiction with
structural constraints and augments the training set with the
corrected samples in an iterative process. An online boosting
tracking technique has also been proposed by Grabner and
Bischof [11].

In a number of recent papers, such as the one of Choi et
al. [12], the output result from more trackers is fused together
using a weighting scheme for the purpose of improving the
performance of the overall tracking procedure.
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Tracking has been heavy investigated also for the case of
camera pose and dense 3D reconstruction of human environ-
ments. The DTAM (Dense Tracking and Mapping) system,
proposed by Newcombe et al. [13], relies not on feature extrac-
tion, but on dense pixel-wise processing. As a single hand-held
RGB-D camera is moved over a static scene, detailed textured
depth maps at selected keyframes are estimated in order to
produce a surface patchwork with millions of vertices.

The main contribution of the work presented in this paper
is summarized as follows:

• the development of a baseline collaborative 2D-3D track-
ing framework that efficiently combines two trackers: a
2D online boosting tracker and a 3D model-based tracker;

• the application of this framework to the mobile manipu-
lation tasks performed by the PR2 robot.

The rest of the paper is organized as follows. In Section II,
the formulation of the tracking challenge that herein proposed
system solves is given in the context of mobile manipulation.
The deployed algorithms are described in Section III, followed
by experimental results presented in Section IV. Finally,
conclusions are stated in Section V.

II. PROBLEM FORMULATION

The goal of the proposed tracking system is to track the 3D
poses φ of a set of rigid bodies C from RGB-D data streams,
as obtained by Kinect, as accurate as possible:

φ̂ = arg max
φ

P (C, φ|I,D); (1)

where φ represents an affine 3D transformation which maps
the 3D pose of an object between two frames and P is the like-
lihood of C and φ given I and D. I and D are the RGB and
the depth information, respectively, delivered by the sensor.
The tracked objects are defined as 3D point clusters, or Point
Distribution Models (PDMs [14]), C = {c0, c1, . . . , cK},
where K is the total number of tracked clusters. The pose
of each cluster model ck is given at every frame by its
corresponding relative affine transformation φ̂k. The position
of the clusters is related to their centroids.

III. METHODOLOGY: THE 23CT TRACKING FRAMEWORK

The flow chart of the 23CT collaborative tracking frame-
work is illustrated in Fig. 2 for the case of a single object
tracking. The tracking is initialized through tabletop object
segmentation, which calculates the 3D reference model, or
cluster, ck of the object of interest. Once ck is known, its
shape is projected into the 2D image, where a classifier
for tracking is trained on the resulted projection. Inside the
tracking loop, the classifier establishes 2D correspondences
between the consecutive frames t−1 and t, where t represents
the discrete time. These 2D image matches are used to select
the 3D point correspondences m̂k between the corresponding
point clouds D[t− 1] and D[t] in the Kinect data. From m̂k,
an initial course transform Acourse for the reference cluster
is calculated. Although, depending on the quality of the m̂k

matches, Acourse can, to some extent, provide good tracking
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Fig. 2. The flow chart of the 2D-3D Collaborative Tracking system
(23CT) consists of four steps: model generation through tabletop clustering,
online multiclass boosting classification, occlusion detection and 3D-based
fine transform calculation.

results, it fails to precisely map ck onto the current cloud D[t].
For this reason, a second transform Afine is determined using
an Iterative Closest Point (ICP) [15] algorithm applied on non-
occluded object points. Thus, the final object model transform
φ̂, which tracks the pose of a 3D object between consecutive
frames, can be written as:

φ̂ =< Acourse, Afine > . (2)

In the following, the calculation of the two affine transforms
will be detailed.

A. Initialization: Object Segmentation

The 3D model is generated through a tabletop object seg-
mentation. The latter is has been implemented in our earlier
work [16] and is realized by grouping 3D points into separate
object clusters from a point cloud D[0]. Firstly, the supporting
plane on which the objects reside is segmented out. Secondly,
points are grouped together into a cluster if the Euclidean
distance between them is smaller than 0.02m. The output of
this operation is represented by a vector of object clusters C
representing the reference object models defined as PDMs.

Along with the cluster representation, the 2D models are
defined as regions of interest (ROIs) in the 2D image plane.
The ROIs are calculated through the 2D projection of the
clusters in C using the parameters of the sensor model (e.g.
optical center and focal length).

B. Online Multiclass Object Tracking

Boosting is a machine learning technique used in a variety
of computer vision applications such as image segmenta-
tion, text and object recognition, natural language processing,
medical diagnostic, etc. In this paper, an Online Multi-Class
Boosting (OMCB) approach [17] has been used to track the
objects of interest in the 2D image domain.
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The nature of multiclass online boosting, that is, of being
able to learn online multiple object instances, made it a
proper candidate for the 2D tracking task in the sense that
the procedure does not only track multiple objects, but also
models the scene’s background as an extra class. In our
approach, we have considered each cluster ck to have a rectan-
gular patch projection onto the image plane. This projection,
or patch, is considered to be the so-called cluster’s class
y(c) ∈ {−1, 0, 1, 2, . . . ,K}. The value −1 represents the extra
class through which the background of the scene is modeled.
By modeling the background, the discriminative power of
the classifier can be significantly improved. In Fig. 3(a), the
background model is illustrated using a different color with
respect to the objects classes.

The classifier maintains a model f : <d → <K , which
is a mapping from the input features space to the multiclass
hypothesis domain [17]. The feature vector x used for training
the classifier is composed of the following features:

• 6 types of Haar-like features [18] extracted from the
rectangular patches, resulting in a number of 192 feature
values normalized to the interval [−1, 1], as proposed
in [19];

• color features obtained from 16 × 16px downsampled
projected patches (see example patches in Fig. 3(a)),
ranging in the interval [0, 1]; color was considered as
the hue plane of the HSV (Hue, Saturation, Value) color
space.

For each cluster class ck, the classifier provides a confidence
measure fk(x). In the multiclass space, the function f is
defined as the vector:

f(x) =
[
f−1(x) f0(x) . . . fK(x)

]
(3)

The new 2D image positions of the objects patches, relative
to the previous frame, are determined as arg max f(x).

C. Reference Model Tracking and Fitting

Once the new 2D positions of the objects patches have been
determined with the help of multiclass boosting, the 3D pose
of each reference cluster has to be calculated in the real-world
3D Cartesian space. This procedure is performed in three
sequential steps. Firstly, the Acourse transform is determined
using a so-called landmarks tracker. The reference cloud is
translated and rotated to the new pose given by Acourse.
Secondly, possible occlusions are calculated and finally the
reference cluster is aligned with the current point cloud data
using an ICP algorithm.

1) The landmarks tracker: represents the key component
which connects the 2D boosting tracker with the 3D one.
Namely, it is used to get 3D point correspondences from
which Acourse will be estimated. In this work, the tracker is
represented by a combination of Lucas-Kanade (LK) optical
flow and Shi-Tomasi features [20] which accurately determine
correspondence keypoints between current and previous object
patches. Once a set of matches has been calculated in the 2D
image domain, their corresponding 3D values mk are obtained

by a direct mapping between the 2D point matches and their
3D correspondences in the current and previous point clouds.
The mapping procedure is applied between the RGB and depth
images delivered by the sensor.

An important challenge in determining point correspon-
dences is the presence of outliers at the end of the procedure.
In order to cope with this problem, a Maximum Likelihood
Estimator (MLE) Φ was used to filter out bad matches [21]:

Φ̂ = arg max
Φ

L(Φ|M(mk)), (4)

where Φ̂ is the maximum likelihood estimate for the Gaussian
Probability Density Function (PDF) P (M|Φµ,Φσ) describing
the 3D orientation distribution of the lines connecting the 3D
correspondence points. The inliers m̂k are obtained from the
set of 3D matches mk using the mean Φµ and variance Φσ
of the MLE. The Acourse affine transformation which maps
the reference cluster ck to its approximate true pose in the
new input point cloud is obtained through a Singular Value
Decomposition (SVD) rigid body transform estimation. The
SVD estimation can be used only if m̂k ≥ 4. Although
the new pose of ck is correlated to the real object’s pose,
the reference cluster is not yet aligned with the input point
cloud. This alignment is achieved using an SVD-based ICP
algorithm which determines the Afine transformation between
the object cluster and the point cloud. One main drawback of
ICP methods is that they often converge to the wrong local
minima if the reference model to be aligned does not come
with a good initial pose guess.

2) Occlusion detection: aims at filtering out the points that
occlude the reference cluster transformed using Afine. The
goal of the method is to generate an non-occluded estimate
ĉk of the real reference cluster model ck. In order to detect
occlusions in real-time, the ray-casting approach has been
used. Namely, the reference point features in ck are projected
at every frame based on the RGB-D sensor’s intrinsic and
extrinsic parameters. The obtained 2D projections are used
to search the current point cloud for occlusions. Firstly, each
point in ck is projected onto the image plane. At each 2D
location given by the projection, a corresponding point from
the current depth image D is found, according to the ray-
casting methodology. A point is said to be occluded if the
point in D has a camera-point distance smaller than the one
corresponding to the projected point in ck. In this case, the
point in the tracked cluster is occluded and thus is discarded
from ĉk.

It is important to mention that the ICP determined Afine
transform provides proper 3D tracking results only if the
number of non-occluded points is above a certain threshold,
corresponding to a heuristically determined value of minimum
30% of the points in the tracked cluster. This means that the
tracking results are stable for partial occlusions of the objects
of interest. Algorithm 1 presents the whole 23CT tracking
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(a) (b) (c)

Fig. 3. Snapshot from the 23CT tracking loop (best viewed in color). (a) 2D multiclass object tracking; The green patches represent object classes, while the
red ones the background model. (b) Aligned reference cluster models (shown in green) onto current depth math. (c) Perspective view on the tracked scene.

strategy as pseudocode1.

Data: Input RGB-D stream.
Result: 3D poses of the object clusters at each input

RGB-D frame.
while initialization do1

Segment the input point cloud D into distinct2

object cluster models C;
Initialize the OMCB classifier with ROIs3

corresponding to the projections of C;
end4

while input RGB-D stream active do5

Sample, evaluate and chose the best hypotheses6

f(x) for the clusters ROIs;
foreach cluster ck in C do7

Determine 3D landmarks mk(ck[t], ck[t− 1]);8

Estimate the landmarks inliers m̂k ⊂ mk;9

if m̂k ≥ 4 then10

Determine the course transform Acourse11

using SVD(m̂k);
Transform ck = ck ·Acourse;12

Calculate and remove occlusions ĉk ⊂ ck;13

ICP based fine transform Afine estimation14

between ĉk and the input cloud D;
Transform ck = ck ·Afine;15

Reproject the transformed cluster ck onto16

the 2D image and update the cluster’s
ROI position and size;

end17

end18

Update the OMCB classifier using the new19

clusters ROIs.
end20

Algorithm 1: Pseudo code of the 23CT multiple
objects tracking approach.

1The source code of the 23CT approach will be released soon under an
open-source license.

IV. EXPERIMENTAL EVALUATION

The evaluation of the overall visual tracking system has
been performed with respect to the 3D ground-truth poses
(3D position plus 3D orientation) of the objects of interest.
For image acquisition, a MS Kinectr RGB-D camera, deliv-
ering 640px × 480px size color and depth images, has been
used. The ground-truth 3D poses were determined using the
following setup. In the scenes, a visual marker was installed
in such a way that the poses of the objects could be easily
measured with respect to the marker. The 3D pose of the
marker was detected using the ARToolKitPlus library [22]
which provides subpixel accuracy estimation of the marker’s
location with an average error of approximately 5mm. By
calculating the markers 3D pose, a ground-truth reference
value for the objects’ position and orientation estimation was
obtained. Further, the positions of the objects’ features were
calculated using the proposed system. Both results, that is
the 2D and the 3D poses, were compared to the ground-truth
data provided by the ARToolKitPlus marker tracking. The 2D
image marker pose was calculated by projecting the marker’s
3D pose onto the 2D image plane.

The pose evolution for an object tracking experiment, in-
cluding 3 tracked objects over a sequence of 413 frames, is
illustrated in Fig. 42. As it can be seen from the diagrams,
the positions and orientations of the tracked object follow
relatively closely the ones delivered by the marker based
recognition system. The calculated orientation error is low
enough to ensure a stable tracking procedure. This correlation
can be easily observed when analyzing the statistical error
results between the two approaches, given in Tab. I. There are
certain sample intervals in the diagrams from Fig. 4, such as
[252, 271] and [347, 413], where the proposed 23CT tracker
outperforms the traditional marker-based system. Namely, the
ARToolKitPlus detection accuracy is strictly dependent on the
adaptive thresholding procedure. Since in the mentioned inter-
vals certain reflections influence the thresholded pattern, the

2The accompanying video of this paper is also available online at
http://youtu.be/tbLvyeCNuDE.
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Xe [m] Ye [m] Ze [m] Rolle [deg] Pitche [deg] Y awe [deg]
Max error 0.1013 0.0853 0.7039 12.0380 24.2644 18.2148
Mean 0.0760 0.0331 0.0143 4.0028 0.3394 7.9535
Std. dev. 0.0096 0.0190 0.0499 10.4121 16.7426 17.0336

TABLE I
STATISTICAL RESULTS OF ERRORS BETWEEN THE PROPOSED 23CT AND MARKER BASED 3D OBJECT TRACKING.
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Fig. 4. Real (reference) and estimated poses of a tracked object of interest in the Cartesian space, corresponding to the sequence with the snapshot example
from Fig. 3.

2D marker cannot be detected, hence the lack of ground-truth
information in the mentioned intervals. An object occlusion
example can be seen in the video accompanying this paper,
between seconds 22-26.

The computation time required for tracking is dependent

on the number of tracked objects. Due to the sequential
implementation of the processing loop, the average tracking
time is approx. 1 − 2 Frames per Seccond (FPS). We expect
a significant improvement through the implementation of the
tracker into parallel processors.
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V. CONCLUSIONS

In this paper, an object tracking algorithm, coined 23CT,
with the purpose of stabilizing the mobile manipulation ca-
pabilities of service robots, has been proposed. One of the
main contributions of the paper lies in the nature of the
tracking loop, which, in comparison to many state of the
art methods, includes the 3D visual information instead of
2D image data only. As seen from the experimental results
section, the proposed approach offers stable tracking which
can be used for the mobile manipulation tasks such as online
adaptation of path planning, object slippage detection, physics-
based projections, etc.

As future work, the authors plan to extend the proposed
collaborative tracking framework with the inclusion of a
motion model, the inclusions of the motion priors from the
robot’s end-effector, the inclusions of the simplified physics
for the stability analysis and the development of new 2D/3D
visual features which could be used in the tracking loop. Also,
an execution time improvement can be achieved by relocating
the sampling and features calculation functions to parallel
computation devices such as Graphical Processors (GPUs) or
Field Programmable Gate Arrays (FPGAs).

ACKNOWLEDGEMENTS

This paper is supported by the Sectoral Operational Program
Human Resources Development (SOP HRD), financed from
the European Social Fund and by the Romanian Government
under the project number POSDRU/89/1.5/S/59323.

REFERENCES

[1] M. Beetz, F. Stulp, P. Esden-Tempski, A. Fedrizzi, U. Klank, I. Kresse,
A. Maldonado, and F. Ruiz, “Generality and legibility in mobile manip-
ulation,” Auton. Robots, vol. 28, no. 1, pp. 21–44, Jan. 2010.
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