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In this paper, a probabilistic solution for gaze following in the context of joint attention 

will be presented. Gaze following, in the sense of continuously measuring (with a greater 

or a lesser degree of anticipation) the head pose and gaze direction of an interlocutor so as 

to determine his/her focus of attention, is important in several important areas of computer 

vision applications, such as the development of non-intrusive gaze-tracking equipment for 

psychophysical experiments in Neuroscience, specialized telecommunication devices, 

Human-Computer Interfaces (HCI) and artificial cognitive systems for Human-Robot 

Interaction (HRI). We have developed a solution based on a probabilistic approach that 

inherently deals with uncertainty of sensor models and incomplete data. This solution 

comprises a hierarchical formulation of a set of detection classifiers that loosely follows 

how geometrical cues provided by facial features are used by the human perceptual system 

for gaze estimation. A quantitative analysis of the proposed architecture’s performance was 

undertaken through a set of experimental sessions. In these sessions, temporal sequences 

of moving human agents fixating a well-known point in space were grabbed by the 

stereovision setup of a robotic perception system, and then processed by the framework. 

Keywords:  Gaze estimation, Feedback control in image processing, Facial features detection, 

Human-Robot Interaction. 

1. INTRODUCTION 

Head movements are commonly interpreted as a vehicle of interpersonal 

communication. For example, in daily life, human-beings observe head movements as the 
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expression of agreement or disagreement in a conversation, or even as a sign of confusion. 

On the other hand, gaze shifts are usually an indication of intent, as they commonly 

precede action by redirecting the sensorimotor resources to be used. As a consequence, 

sudden changes in gaze direction can express alarm or surprise. Gaze direction can also 

be used for directing a person to observe a specific location. To this end, during their 

infancy, humans develop the social skill of joint attention, which is the means by which 

an agent looks at where its interlocutor is looking at by producing an eye-head movement 

that attempts to yield the same focus of attention. Over nine months of age, infants are 

known to begin to engage with their parents/caregivers in an activity in which both look 

at the same target through joint attention. 

As artificial cognitive systems with social capabilities become more and more 

important due to the recent evolution of robotics towards applications where complex and 

human-like interactions are needed, basic social behaviors such as joint attention have 

increasingly become important research topics in this field. Fig. 1 illustrates the ROVIS2 

(Robust Vision and Control Laboratory) gaze following system at work, under the context 

of joint attention for Human Robotic Interaction (HRI). Gaze following thus represents 

an important part of building a social bridge between humans and computers. Researchers 

in robotics and artificial intelligence have been attempting to accurately reproduce this 

type of interaction in the last couple of decades, and, although much progress has been 

made [1], dealing with perceptual uncertainty still renders it difficult for these solutions 

to work adaptively. 
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Fig. 1 - Gaze following in the context of joint attention for HRI, using the ROVIS system on a 

Neobotix MP 500 mobile platform. 

Gaze following is an example for which the performance of artificial systems are still 

far from human adaptivity. In fact, the gaze following adaptivity problem can be stated 

as follows: how can gaze following be implemented under non-ideal circumstances 

(perceptual uncertainty, incomplete data, dynamic scenes, etc.)? Fig. 2 demonstrates how 

incomplete data, arguably the issue where the lack of adaptivity and underperformance 

of artificial systems are most apparent, might influence the outcome of gaze following. 

 
(a)                                                      (b) 

 

Fig. 2 - Examples of probable gaze following failure scenarios due to incomplete data: facial 

features occluded in profile views (a), or failure of feature detection algorithms (b). 

Feature detection represents a subtopic within the head pose estimation problem. 

Accurate estimate for the eye, nose or the mouth represents an intermediate stage, in 
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which essential information used by the geometrical approach for head pose estimation 

is computed. Mouth recognition is dealt with methods such as the ones suggested in [2] 

and [3]. A common approach for detecting the mouth is by pre-segmenting red color on 

a specific patch of the image. Both methods use a ROI extracted after head segmentation, 

in which the mouth is approximately segmented, after a color space conversion is 

performed (such as RGB to HSI (Hue, Saturation, Intensity) [2], or RGB to Lab [3]). On 

the other hand, nose detection algorithms use Boosting classifiers, commonly trained with 

Haar-like features [4], or the 3D information of the face, as in [5]. The shape-based 

algorithm proposed in [6], built on the isophote curvature concept, i.e. the curve that 

connects points of the same intensity, is able to deliver accurate eye localization from a 

web camera. The eye location can be determined using a combination of Haar features 

[7], dual orientation Gabor filters and eye templates, as described in [8]. 

In the following text, we propose a robust solution to facial feature detection for 

human-robot interaction based on a i) feedback control system implemented at the image 

processing level for the automatic adaptation of the system’s parameters, ii) a cascade of 

facial features classifiers and iii) a Gaussian Mixture Model (GMM) for facial points 

segmentation. The goal is to obtain a real-time gaze following estimator capable of 

dealing with perceptual uncertainty and incomplete data. The expected outcome of this 

project will be an autonomous system, with the ability of robustly estimating the gaze’s 

direction of interlocutors within the context of joint attention in HRI. 

2. CONTROLLING A MACHINE VISION SYSTEM 

In a robotic application, industrial or real world, the purpose of the image processing 

system is to understand the surrounding environment of the robot through visual 

information. 

Low level image processing deals with pixel wise operations aiming to improve the 

input images and also separate the objects of interest from the background. Both the inputs 

and outputs of low level blocks are images. The second type of modules, which deal with 

high level visual information, are connected to low level operations through the feature 

extraction component which converts the input images to abstract data describing the 

imaged objects of interest. For the rest of the high level operations, both the inputs and 

outputs are abstract data. The importance of the quality of the results coming from low 
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level stages is related to the requirements of high level image processing [9]. Namely, in 

order to obtain a proper visual understanding of the imaged environment at high level 

stage, the inputs coming from low level have to be reliable. 

The sequential, feedback free, approach has an impact on the final perception result, 

since each operation in the chain is applied sequentially, with no information between the 

different levels of processing. In other words, low level image processing is done 

regardless of the requirements of higher levels. For example, if the segmentation module 

fails to provide a good output, all the subsequent steps will fail. In [10] and [11], the 

inclusion of feedback structures within vision algorithms for improving the overall 

robustness of the chain is suggested. In the proposed approach, the parameters of low 

level image processing are adapted in a closed-loop manner in order to provide reliable 

input data to higher levels of processing. 

The basic diagram, from which the feedback mechanisms for machine vision are 

derived in this paper, can be seen in Fig. 3. In such a control system, the control signal u, 

or actuator variable, is an image processing parameter, whereas the controlled variable 

y is a measure of feature extraction quality. 

 
Fig. 3 - Feedback adaptation of an image processing operation. The image processing quality 

measure y is used as a feedback control variable for adapting the parameters of the vision 

algorithms using the actuator u. 

3. IMAGE PROCESSING CHAIN 

The gaze following image processing chain, depicted in Fig. 4, contains four main 

steps. We assume that the input is an 8-bit gray-scale image � = ��×�, of width V and 

height W, containing a face viewed either from a frontal or profile direction, where � =
{0,… , 255}. (�, �) represents the 2D coordinates of a specific pixel. The face region is 

obtained from a face detector. 
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Fig. 4 - Block diagram of the proposed gaze following system for facial feature extraction and 3D 

gaze orientation reconstruction. Each processing block within the cascade provides a measure 

of feature extraction quality, fused within the controlled variable �� (see Eq. 2). 

Firstly, a set of facial features ROI hypotheses � ∈ {��� , ��� , ��, ��}, consisting of 

possible instances of the left ��� and right ��� eyes, nose �� and mouth ��, are extracted 

using a local features estimator which determines the probability measure �(�|�) of 

finding one of the searched local facial region. The number of computed ROI hypotheses 

is governed by a probability threshold ��, which rejects hypotheses with a low �(�|�) 
confidence measure. The choice of the �� threshold is not a trivial task when considering 

time critical systems, such as the gaze estimator, which, for a successful HRI, has to 

deliver in real-time the 3D gaze orientation of the human subject. The lower �� is, the 

higher the computation time. On the other hand, an increased value for �� would reject 

possible “true positive” facial regions, thus leading to a failure in gaze estimation. As 

explained in the followings, in order to obtain a robust value for the hypotheses selection 

threshold, we have chosen to adapt �� with respect to the confidences provided by the 

subsequent estimators from Fig. 4, which take as input the facial regions hypotheses. The 

output probabilities coming from these estimation techniques, that is, the spatial estimator 

and the GMM for pointwise feature extraction, are used in a feedback manner within the 

extremum seeking control paradigm. 

Once the hypotheses vector H has been build, the facial features are combined into 

the spatial hypotheses  =  !,  ", … ,  � , thus forming different facial regions 

combinations. Since one of the main objective of the presented algorithm is to identify 

facial points of frontal, as well as profile faces, a spatial vector #$ is composed either from 

four, or three, facial ROIs: 

 

 $ = {�!, �", �%, �&} ∩ {�!, �", �%} (1) 
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where �$ ∈ {�!, �", �%, �&}. 
The extraction of the best spatial features combination can be seen as a graph search 

problem  ( = ): +( , ,) → ℝ , where E are the edges of the graph connecting the 

hypotheses in g. The considered features combinations are illustrated in Fig. 5. Each 

combination has a specific spatial probability value �( (|�) given by a spatial estimator 

trained using the spatial distances between the facial features from a training database. 

Once the spatial distributions of the probable locations of the facial features ROIs are 

available, their point-wise location /$ is determined using a GMM segmentation method. 

Its goal is to extract the most probable facial point-wise locations /$ given the GMM 

pixel likelihood values �(0$| (). The most relevant point features for computing the 3D 

gaze of a person are the centers of the eyes, tip of the nose and corners of the mouth. The 

described data analysis methods are used to evaluate a feature space composed of the 

local and spatial features. 

Having in mind the facial feature points extraction algorithm described above, it can 

be stated that the confidence value �) of the processing chain in Fig. 4 is a probability 

confidence measure obtained from the estimators cascade: 

 

�� = 	�(/$|�, �,  ( , 0$) (2) 

 

Since the whole described processing chain is governed by a set of parameters, such 

as the threshold ��  for selecting the vector s, we have chosen to adapt it using an 

extremum seeking control mechanism and the feedback variable �), derived from the 

output of the gaze following structure illustrated in Fig. 4. The final 3D gaze orientation 

vector 234(/$), representing the roll, pitch and yaw of the human subject, is determined 

using the algorithm proposed in the work of Gee and Cipolla [12]. 
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4. PERFORMANCE EVALUATION 

4.1. EXPERIMENTAL SETUP 

In order to test the performance of proposed gaze following system, the following 

experimental setup has been prepared. 

The system has been evaluated on the Labeled Faces in the Wild (LFW) database 

[13]. LFW consists of 13.233 images, each having a size of 250 × 250�5. In addition to 

the LFW database, the system has been evaluated on an Adept Pioneer 3-DX mobile robot 

equipped with an RGB-D sensor delivering 640 × 480�5 size color and depth images. 

The goal of the scenarios is to track the facial features of the human subject in the HRI 

context. The error between the real and estimated facial feature’s locations was computed 

offline. 

For evaluation purposes, two metrics have been used: 

• the mean normalized deviation between the ground truth and the estimated 

positions of the facial features: 

 

9(:,:;) = <(:) 1>?‖/$ −/; $‖
BC"

$D!
 (3) 

 

where k is the number of facial features, : and :;  are the manually and estimated 

annotated positions of the eyes, nose and mouth, respectively, and <(:) is a 

normalization constant: 

 

<(:) = 1
‖(/�� +/��) − /�‖ (4) 

 

 

• the maximal normalized deviation: 

 

 

9FGH(:,:;) = <(:) max(D!,…,BC"‖/$ −/; $‖ (5) 
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4.2. COMPETING DETECTORS 

The proposed gaze following system has been tested against three open-source 

detectors. 

1) Independent facial feature extraction: The detector is based on the Viola-Jones 

boosting cascades and returns the best detected facial features, independent of their spatial 

relation. The point features have been considered to be the centers of the computed ROIs. 

The boosting cascades, one for each facial feature, has been trained using a few 

hundred samples for each eye, nose and mouth. The searching has been performed several 

times at different scales, with Haar-like features used as inputs to the basic classifiers 

within the cascade. From the available ROI hypotheses, the one having the maximum 

confidence value has been selected as the final facial feature. 

2) Active Shape Models: An Active Shape Model (ASM) estimates a dense set of 

feature points distributed around face contours such as eyes, nose, mouth, eyebrows, or 

chin. An ASM is initially  trained using a set of manually marked contour points. 

The open-source AsmLib, based on OpenCV, has been used as candidate detector. 

The ASM is trained from manually drawn face contours. The trained ASM model 

calculates the main variations in the training dataset using Principal Component Analysis 

(PCA), which enables the model to automatically recognize if a contour is a face contour. 

PCA is used to find the mean shape and the main variations of the training data with 

respect to the mean shape. After finding the shape model, all training objects are deformed 

to the main shape, and the pixels converted to vectors. The positions of the contours at 

each search step are corrected by the usage of the lines perpendicular to the control points 

of the contour. After creating the ASM model, an initial contour is deformed by finding 

the best texture match for the control points. This is an iterative process, in which the 

movement of the control points is limited by what the ASM model recognizes from the 

training data as a ”normal” face contour. 

3) Flandmark: Flandmark [14] is a deformable part model detector of facial features, 

where the detection of the point features is treated as an instance of structured output 

classification. The algorithm is based on a Structured Output Support Vector Machine 

(SO-SVM) classifier for the supervised learning of the parameters for facial points 
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detection from examples. The objective function of the learning algorithm is directly 

related to the performance of the resulting detector, which is controlled by a user-defined 

loss function. 

In comparison to our gaze following system, which uses a segmentation step for 

determining the pointwise location of the facial features, Flandmark considers the centers 

of the detected ROIs as the point location of the eyes, nose, and mouth. 

The mean and maximal deviation metrics were used to compare the accuracy of the 

four tested detectors with respect to the ground truth values available from the benchmark 

databases. Especially for the evaluation of the computation time, the algorithm has also 

been tested on a mobile robotic platform. 

The cumulative histograms of the mean and maximal normalized deviation are shown 

in Fig. 6 for frontal and profile faces. In all cases, the proposed estimator delivered an 

accuracy value superior to the ones given by the competing detectors. If the accuracy 

difference between our algorithm and Flandmark is relatively low for the case of frontal 

faces, it actually increases when the person’s face is imaged from a profile view. 

An interesting observation can be made when comparing the independent detectors 

with the ASM one. Although the ASM outperforms independent facial feature extraction 

on frontal faces, it does not performs well when the human subjects are viewed from 

lateral. This is due to the training nature of the ASM, where the input training data is 

made of points spread on the whole frontal area (e.g. eyes, eyebrows, nose, chin, cheeks, 

etc.). 
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(a) (b) 

(c) (d) 

 

Fig. 5 - Cumulative histograms for the mean and the maximal normalized deviation shown for all 

competing detectors applied on video sequences with frontal (a,b) and profile (c,d) faces. 

5. CONCLUSIONS 

In this paper, a robust facial features detector for 3D gaze orientation estimation has 

been proposed. The solution is able to return a reliable gaze estimate, even if only a partial 

set of features is available, with a clear indication of the uncertainty involved. The paper 

brings together algorithms for facial feature detection, machine learning and control 

theory. During the experiments, we have investigated the system response and compared 

the results to ground truth values. As shown in the experimental results section, the 

method performed well with respect to various testing scenarios. As future work, the 
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authors consider the possibility of extending the framework for the simultaneous gaze 

estimation of multiple interlocutors and the adaptation of algorithm with respect to the 

robot’s egomotion. 
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