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Abstract— In this paper a real-time machine vision system
for robotic scene perception and estimation is proposed. Its
goal is to determine the 3D structure of the imaged scene
together with the relative position and orientation of the robot
with respect to the environment. Mainly, the vision system
is composed of two basic elements: a 3D camera-scene depth
computation method and a camera egomotion estimator. The
image processing operations have been implemented into a
sequential machine vision pipeline. A performance evaluation
of the proposed approach is given through experimental results
within an indoor environment.

I. INTRODUCTION

One of the main components of a robotic application is
represented by the robot’s machine vision system. In the
robotics community, it has been noticed over the past decade
how the vision algorithms evolved from their classical 2D
visual servoing approaches to complex 3D visualization sys-
tems that perceive both the 3D structure of the environment,
as well as the relative pose (position and orientation) of the
robot with respect to the imaged scene [1]. The computation
of the robot’s pose over time is determined relative to the
robot’s camera pose, a process also known as egomotion
estimation.

In 3D scene perception, there are commonly two types
of vision sensors used for providing visual information
data: stereo vision cameras and range sensors such as laser
scanners or 3D Time-of-Flight (ToF) cameras [2]. In the
process of stereo vision based 3D perception and egomotion
estimation, the stereo correspondence problem has to be
solved, i.e. the corresponding feature points, necessary for
3D reconstruction, have to be extracted from both stereo
images [3]. In contrast, stereo vision range sensing devices
provide direct capturing of 3D scenes, delivering a pure
stereo depth image in form of 3D point clouds [4]. In the case
of range sensors, the obtained depth information can have
different error values, depending on the sensed surface. This
phenomenon makes stereo vision a more reliable solution
for autonomous robotic systems that operate in real world
environments.
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Camera motion estimation, or egomotion, has been studied
within the Simultaneous Localization and Mapping (SLAM)
context [5]. Using detected visual information, motion es-
timation techniques can provide a very precise egomotion
of the robot. In SLAM also, the basic sensor used is the
stereo camera [6], [7]. The main operation involved in stereo
based robotic perception is the computation of the so-called
correspondence points used for calculating the 3D pose of the
robot’s camera. Correspondence calculation is also known
as feature matching, a process which, in the case of 3D
sensing, has to be applied on the stereo image pairs and
also on consecutive sequence of stereo images [8]. The most
common features used in this context are points localized
through corner detectors such as Harris [9]. Another well-
known technique for feature detection is the Scale Invariant
Feature Transform (SIFT) [10], in which the computed
features are invariant to rotation, scaling, translation and
partially to changes in illumination. Other approaches are
based on the extraction of lines or edges [7], [11] which have
the advantage to provide geometrical information about the
environment, but are computational expensive. Based on the
extracted features, the robot’s motion can be extracted with
the help of estimators such as the Kalman [12] or Particle
Filter [13].

In this paper the authors propose a real-time dual egomo-
tion and scene estimation system for the purpose of reliable
3D robotic perception. The novelty of the presented research
work lies on the developed 3D perception pipeline used to
fuse color stereo images with the computed egomotion of
the camera, as well as on its usage to sense cluttered indoor
robotic environments.

The rest of the paper is organized as follows. In Section II
the theory behind 3D depth sensation is presented, followed
in Section III by the egomotion estimation description. The
implementation of the 3D perception pipeline is given in
Section IV together with performance evaluation results.
Finally, conclusions and outlook are presented in Section V.

II. MECHANICS OF DEPTH SENSATION

The 3D depth estimation approach used in this paper is
based on a triangulation algorithm between the left and right
images of a stereo camera and an imaged real world 3D
point [14]. The principle of the method is illustrated in Fig. 1.
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Fig. 1. 3D position estimation of a point P using a pair of rectified stereo
images.

A. Stereo Camera Configuration

In order to calculate the 3D position of a point, its
corresponding 2D projections onto the left and right image
planes of the stereo camera have to be determined [14].
The projection can only be calculated if the stereo camera
is calibrated, namely if its intrinsic and extrinsic parame-
ters are known. These parameters are obtained through the
camera calibration process which calculates on one hand
the internal, or intrinsic, camera parameters K, such as
the focal length f , optical centers (cv, cw) of both sensors,
aspect ratio and skew constant and, on the other hand, the
external, or extrinsic parameters, represented by the rotation
and translation [R, t] of each sensor of the stereo camera
with respect to a fixed world reference point. Once these
parameters are known, they can be used to compute the
projection matrices QL, QR ∈ <3×4 of each sensor, in the
following homogeneous matrix multiplication form:

Q =


f 0 cv 0
0 f cw 0
0 0 1 0
0 0 0 1

 ·

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1

 = K · [R|t],

(1)
where K is the intrinsic camera matrix. In the proposed
system, the pose of the right sensor is always calculated with
respect to the left sensor. Having in mind that the two are
parallel to each other and on the same x axis, the pose of
the right sensor is obtained as a pure translation with respect
to the left one, namely:

[RR|tR] = [I|[b, 0, 0]T ], (2)

where I is the identity matrix. The position of the right
sensor is given by its translation over the x axis of the
Cartesian space by a coefficient b known as the baseline
between the optical centers of the two sensors.

The triangulation method can be efficiently used only if
the projections of the object points on the image planes

are known, that is, only if the correspondence of each
feature point is known in both the left and right images.
This procedure, also encountered under the name of feature
matching, determines for each real world 3D point P =[
X Y Z 1

]T
, its corresponding projections onto the left

and right image planes of the stereo camera:pL =
[
vL wL 1

]T
,

pR =
[
vR wR 1

]T
,

(3)

where (v, w) are pixels within the 2D image plane. As can
be seen from Fig. 1, the 2D image positions pL and pR are
projected as the intersection of the image planes with the line
connecting point P in world coordinates with the optical
centers OL and OR of the stereo camera. The principal
plane, that is the image, is located at the focal distance f
from the optical centre of the sensor. The origin of the image
coordinate system is considered as the top-left image corner
(v0, w0).

B. Disparity Computation

Having in mind the calculated stereo camera parameters
and points correspondences, the goal of depth computation
is to determine the camera-scene distance Z. The output of
the depth estimation procedure is a depth map f(x, y, z)
containing voxels representing the estimated 3D positions of
the matched feature points in meters.

As already explained, the feature matching procedure
determines for each pixel in the left image IL(v, w) its
corresponding point in the right image IR(v, w). A straight-
forward approach to feature matching is to compare each
pixel in IL(v, w) with each pixel IR(v, w). In this paper, a
pair of pixels {pL, pR} are considered corresponding points
if their normalized cross correlation is the highest.

However, having in mind the high computational complex-
ity (e.g. for a pair of typical 1024x768px images a number of
app. 611 calculations have to be performed), this approach
is not feasible for a real-time 3D perception system. The
problem has been solved through the usage of rectified stereo
images which have the property that the pixels on the v axes
of IL(v, w) and IR(v, w) are parallel to each other. Image
rectification is obtained via the projection matrices QL, QR

and the epipolar geometry constraint [14].
The above simplification allows the corresponding search

to be performed only along the v axis of the image plane,
usually on a predefined interval H = [dmin, dmax], also
known as the horopter. Hence, the 3D position estimation of
a point is obtained using the so-called disparity computation:

X = (vL − cv) ·
b

d
, (4)

Y = (wL − cw) ·
b

d
, (5)

Z = f · b
d
, (6)



where d is the disparity of the projected point P :

d = vL − vR. (7)

One of the most popular disparity computation algorithm,
also used in this work, is the so-called Block Matching
(BM) [3] approach. In order to obtain a 3D model of the
imaged scene, each calculated depth map f(x, y, z) has to
be associated with its corresponding camera pose, as will be
further explained.

III. CAMERA EGOMOTION ESTIMATION

Self-localization is one of the main requirements in the
field of autonomous robotics. This process, known as ego-
motion estimation, is normally accomplished by estimating
the pose of the robot’s stereo camera while it moves through
space. In this paper, we have considered the problem of ego-
motion estimation through stereo vision only, as illustrated
in Fig. 2.
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Fig. 2. Stereo vision based egomotion estimation principle.

The goal of egomotion estimation is to determine the new
camera pose C(k+1) with respect to the previous one C(k)
given a set of matched 3D points Pi and the intrinsic and
extrinsic camera matrices. The Pi set of 3D points are needed
to establish the homography, or perspective transformation,
between the two neighboring views of the camera, that is,
C(k) and C(k + 1). A set of minimum 4 points are needed
to determine the homography between two views [14]. Since
only a small number of points are needed for calculating the
homography, there is no need to obtain a dense, computation
expensive, depth map such as the one obtained via the BM
procedure explained in the previous section. On the other
hand, in order to obtain a precise reconstruction of the
camera’s egomotion, the corresponding projected 2D points
have to be precisely detected in the stereo images.

In the proposed system, a Harris corner detector [9] feature
matching algorithm is used to compute from Pi the following
corresponding pairs:

• a set of corresponding 2D points {pLi(k), pRi(k)} from
the left and right images at camera pose C(k);

• the reconstructed 3D positions PRCi(k) of points Pi

from {pLi(k), pRi(k)} and the camera’s intrinsic and
extrinsic information;

• the corresponding 2D points pLi(k + 1) in the new
camera pose C(k + 1) for every matched 2D point
pLi(k) in the left image of the vision sensor.

The above mentioned pairs are used in a Perspective-N-
Point estimation manner for obtaining the new camera pose
C(k+ 1) as follows. The reconstructed 3D points PRCi(k),
determined from the stereo pair C(k) are reprojected onto
the left image of C(k+1). Knowing, with respect to the left
image, the 2D corresponding points pLi(k)→ pLi(k+1), a
reprojection error can be calculated as:

Ed(pLi, p̂RCi) =
√

(vLi − v̂RCi)2 + (wLi − ŵRCi)2, (8)

where p̂RCi are the image reprojected points from PRCi(k)
and Ed(·) is the Euclidean distance. The reprojection error
from Eq. 8 is further minimized through a Gauss-Newton
optimization procedure, which adapts the new camera’s ro-
tation and translation [R(k + 1)|t(k + 1)]. The new pose of
the camera is thus given by the values of [R(k+1)|t(k+1)]
which minimize Eq. 8. Finally, the new pose is calculated
as:

C(k + 1) = R(k + 1) · C(k) + t(k + 1). (9)

IV. REAL-TIME 3D MACHINE VISION PIPELINE
AND EXPERIMENTAL RESULTS

The proposed 3D perception approach has been imple-
mented as the image processing pipeline from Fig. 3. The
first operation on the pipeline is the image acquisition one,
which reads color images from the stereo camera. Once the
left and right image pair is available, two distinct processing
threads are started. The first thread computes the depth im-
age, which contains dense camera-object distances, while the
second thread deals with feature matching and the calculation
of the camera’s egomotion. When both the camera’s pose
[R|t] and the depth map f(x, y, z) are available, they are
annotated to the virtual 3D model of the imaged scene. The
3D coordinates of the depth map are rendered with respect
to the computed camera pose.

We have considered a processing cycle to begin with
image acquisition and end with camera and depth annotation
to the virtual 3D model, as depicted in Fig. 3. In the
experimental setup, a mechanically calibrated Point Grey
Bumblebeer stereo camera system has been used to acquire
a sequence of 519 indoor images. The average computational
time needed by the considered processing operations is
shown on the timeline from Fig. 3. As can be seen, a
processing cycle lasts just over 700ms, the value being low
enough to consider the proposed system as a real-time one.
The implemented image processing program has been tested
on a typical portable computer running a 64 bits operating
system on an Intelr i3 dual core CPU, each processor having
a 2.40GHz clock speed.
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Fig. 3. Computational pipeline of the proposed 3D perception system.

An snapshot of a processing slice can be seen in Fig. 4.
One of the main operations in egomotion estimation is the
calculation of the reprojection error, shown in Fig. 4(a). The
reprojection error is represented as the blue line linking the
correspondences between the C(k) and C(k+1) left images
(yellow circles) and the 3D reprojected points from C(k)
onto the C(k + 1) left image (red circles). An example
of egomotion estimation and depth map annotation over
a sequence of 15 images is presented in Fig. 4(b). The
rendering of the annotated 3D virtual model is performed
on top of an OpenGLr render.

(a) (b)
Fig. 4. Slices taken from the 3D perception pipeline (best viewed in
color). (a) The reprojection error (8) over a typical indoor scene. (b) Camera
egomotion and scene structure annotation over a sequence of 15 stereo
images.

V. CONCLUSIONS AND OUTLOOK

In the presented paper, a real-time 3D perception system
has been proposed. Its main elements are the depth sensing
algorithm together with the camera egomotion estimator. The
goal of the proposed system is to be used on autonomous
robotics platforms that need a real-time 3D machine vision
component. The system has been implemented as a real-
time processing pipeline, one full operational cycle being
computed in just over 700ms, thus meeting the real-time
requirements.

As future work, the authors consider the speed enhance-
ment of the proposed system using state of the art parallel
processing equipment, such as FPGAs and GPUs which,
in the authors opinion, would exponentially decrease the
processing time (e.g. feature matching for the left and right

images, as well as matching for neighboring camera poses
would be done in parallel). Also, a real-time feedback
optimization technique of the proposed perception system
is considered for coping with uncertain situations that can
occur in the imaged environment (e.q. variable illumination,
moving objects, occluded areas etc.).
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