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Abstract. Nowadays reconstruction techniques of unknown and dynamic scenes in a virtual 
3D space have to provide a reliable and precise pose of the target objects, at a low 
reconstruction error rate. In this sense, object recognition and 3D reconstruction methods are 
classified into two categories: marker based and a-priori free methods. In this paper, two such 
methods are combined in order to evaluate the accuracy of a real-time 3D scene and shape 
reconstruction system. We consider as ground truth the robust pose estimation delivered by 
the ARToolKit library, which has an average pose error of 6%, to which we relate the 
calculated unknown object poses. The evaluation scenario begins with the accurate detection 
of the ARtoolKit marker fallowed by a manual measure of the real pose. The object of interest 
is reconstructed in a virtual space using a region based recognition method and a 3D pose 
estimation approach. Finally, a statistical evaluation of the errors between the estimated 
objects and the marker is performed. 
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1 Introduction 

 
Today’s autonomous robotic systems aim to 

mimic the mechanisms and the complex behaviour of 
humans. The need to move, grab or understand an 
unknown scene represents a crucial requirement for a 
robotic platform. In this process, a key task is the 
robust estimation of the robot’s position and 
orientation (pose) together with the understanding of 
the environment. In order to achieve this purpose, the 
robot must be able to reliably sense the surrounding 
3D environment. The 3D sensing problem is usually 
solved through stereo imaging (Hartley and 
Zisserman, 2004), laser scanning (Surmann et al., 
2003), or 3D scene estimation with Time of Flight 
(ToF) cameras (May et al., 2006). Each of these three 
methods has advantages and disadvantages. The 
stereo vision approach has difficulties in providing 
reliable real-time 3D information to the robot, as it is 
also highly sensitive to changing lighting conditions. 
On the other hand, a laser scanner or ToF camera has 
a higher precision, but are usually limited to a low 
sensing area around the robot. Also, because of their 
active components, lasers and ToF sensors are mainly 
used indoors. 
 In this paper, a performance evaluation system for 
estimating the precision of a real-time 3D sensing 
platform is proposed. Mainly, such a system includes 
two components: an experimental test-bed, along 

with ground truth information, and the vision 
methods to be evaluated (Ahmed and Farag, 2004). In 
order to obtain a good performance evaluation, all the 
results must be quantified for a reliable objective 
comparison (Szeliski, 1999), (Szeliski and Zabih, 
1999). The work presented in this paper is aimed at 
the development of a testing setup for evaluating the 
precision of 3D pose estimation for recognized 
objects of interest, together with the virtual 3D 
reconstruction of the imaged scene. The block 
diagram of the proposed architecture can be seen in 
Fig. 1. Our performance evaluation approach is based 
on the ARToolKit library, used as a reliable ground 
truth, to which the poses of the objects are related. 
 The rest of this paper is organised as follows. In 
Section II, a description of the stereo 3D scene 
reconstruction system is presented, followed by the 
description of the marker-based pose recognition in 
Section III. Finally, before conclusions, experimental 
results are given in Section IV. 
 
2 Stereo scene reconstruction 
 

The stereo vision system enables, through a 
disparity map, an easy and low time computation 
mechanism to estimate the depth of a scene. The 
primary problems to be solved in a stereo system are 
camera calibration, correspondence matching 
between left and right stereo images and 3D
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Fig. 1. Block diagram of the proposed real-time 3D object reconstruction system and the 3D pose evaluation approach. 

 
reconstruction. Camera calibration is the process of 
finding the intrinsic (e.g. focal length, optical centre, 
etc.) and extrinsic (camera pose) parameters of the 
camera that produced a given image. Starting from a 
set of image correspondence points, RL pp ↔ , the 
calibration task aims to find the camera matrices LQ  
and RQ  which describe the projection of a real world 
3D point onto the 2D image planes: 
 

PQp LL ⋅=     PQp RR ⋅=  (1) 
 
where X represent a point in the real world and Lp  
and Rp  are the points in the left and right 2D image 
plane, respectively, as seen in Fig. 2. 
 
2.1 Camera geometry 
 

The accurate estimation of the camera’s geometry 
is critical for relating the image information, 
expressed in pixels, to an external reference world 
coordinate system. The camera’s geometry is 
determined during the calibration process. The first 
geometry gives the pose (position and orientation) of 
each camera while the internal geometry consists in a 
series of intrinsic parameters. The camera geometry, 
also known as projection matrix 43xQ ℜ∈ , is 
described in Eq. (2),  
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where K  is the intrinsic matrix, while R and t are the 
rotation and translation matrices of each sensor, 
respectively. 

The intrinsic matrix stores values which are 
essential for representing the camera’s internal 
parameters, such as focal length f , skew constant γ , 
or the optical centre ),( 00 vup p . Within the 
projection matrix Q, the focal length can be 
computed also in terms of pixels instead of meters. 
Thus, α represents the focal distance in metric units 
computed based on the focal length and a scale factor 
m  relating pixels to distance as follows: 
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Fig. 2. Estimation principle of a real world point P. 

 
Having computed all the matrices which 

geometrically describe the scene, we can focus the 
attention on computing the 3D coordinates of the 
information form the images. The most common 
method used is triangulation. In this sense, a set of 
correspondence features between the left ),( yxI

L
 

and right ),( yxI R  images has to be found. Based on 
the projection of the real world point 
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TZYXP ]1[=  onto each principal plane, the 
projected 2D image points of P are:  
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The principle planes, in which the points Lp and 

Rp  are projected, are positioned between the optical 
centre LC  and RC  of each camera sensor and point 
P. The image is formed at a distance equal to the 
focal distance from the optical centre. Each pixel 
from the image is determined by intersecting the 
principal plane with the line connecting the optical 
centre of the sensor and the corresponding point P 
from the real world.  

 
2.2. Depth perception 
 
 In order to navigate through a scene without 
colliding with different objects, a robot must be able 
to sense the environment. Through stereo geometry 
this can be achieved by computing the so-called 
disparity map which represents an image having its 
pixel intensities correlated with the distance between 
the camera and the scene. Based on this map and on 
the projection matrix obtained during the calibration 
process, the visualised scene can be rendered in a 
virtual 3D space. 
 One important issue is to perfectly align the 
coordinates of the camera and world. Thus the image 
plane will be aligned with the world plane assuring 
that the depth perception of a point P will be the 
same in both images. 
 The depth is determined by finding 
correspondences between the two stereo images and 
computes the difference of the point coordinates from 
the left and the right image as in Eq. (5) 
 

d
bfZ ⋅

= , (5) 

RL xxd −=  . (6) 
 
 The computed depth is inversely proportional 
with the disparity d calculated in Eq. (6), where the 

Lx  and Rx  are the coordinates of the same world 
point P projected onto the image planes of the stereo 
camera. The disparity is computed by a method 
called feature matching which search the 
corresponding point from the left image into the right 
image. This is called correspondence matching. More 
precise, the algorithm tries to match a window of 
pixel in the left image with a corresponding sized 
window on the right one as can be seen in Fig. 3.  
  The time needed to compute the search increase 
substantially for high resolution images, because the 

matching window has to be moved, in search of a 
match, through the entire image domain. This issue 
can be simplified by using rectified images. Image 
rectification is a transformation process used to align 
the two images to a common axis. 
 

 
 

Fig. 3. Stereo matching correspondence search. 
 
 Rectification corrects a distorted image by 
transforming the image into a standard coordinate 
system (Oram, 2001). The basis of rectification is the 
epipolar geometry. This geometry aims to reduce the 
search of a correspondence point to a search line. 
This line is called epipolar line L, and is generated by 
intersecting the epipolar plane with the image plane. 
The epipolar plane is the plane that contains the 
reference line and the epipolar line. 
 The idea of epipolar geometry is that a point from 
the left image generates an epipolar line in the right 
image, thus the corresponding point from the right 
image lies on the respective epipolar line. This 
substantially reduces the time during the search of 
correspondence (Hartley and Zisserman, 2004). 
 The correspondence computation can be tackled 
in different ways, as in (Brown et al., 2003), although 
the most popular correspondence matching algorithm 
used in robotics is Block Matching (BM). 
 The BM method uses wither of the two main 
correlation functions named: Sum of Squared 
Differences (SSD) (see Eq. (7)) and Sum of Absolute 
Differences (SAD) (see Eq. (8)). Both functions are 
applied on small sliding windows in the image 
domain. The SSD function is commonly used as the 
similarity measure. Because of the power compitation 
involved, the SSD method suffers from the 
windowing problem and computational cost (Trucco 
and Vierri, 1998).  
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 For these two reasons the SSD method cannot be 
used in real-time application for autonomous robots 
because the system reaction is to slow to avoid an 
obstacle. The second approach is more feasible and 
simple. He simply searches the corresponding SAD 
value in the right image using a shifting window. The 
window moves along an interval H called horopter 
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described in Eq. (9). H is defined as the area covered 
by the search range of BM. 
 

[ ]maxmin ,ddH =  (9) 
 
 Having computed all the disparities, a disparity 
map can be obtained. This is a grey scale map where 
the intensity represents depth. The lighter shades 
(greater disparities) represent regions with less depth 
as opposed to the darker regions which are further 
away from the camera. 
 
2.3. Stereo object detection 
 

The principle of object detection and pose 
estimation is to find a unique set of features (shape, 
colour, area, texture, etc.) that characterise that 
object. Based on these features we can eliminate all 
the unwanted elements and keep only the object that 
fit to the profile. In this paper we used for evaluation 
a method based on colour segmentation. 
 The method consists in three main stages which 
are image enhancement, colour segmentation and 
object detection. In the image enhancement step, a 
spatial filter is applied on all 3 images belonging to 
the RGB (Red, Green, and Blue) format. The filter 
computes for each pixel a mean of the intensities of 
neighbourhood pixels which ensure a smooth colour 
translation between pixels intensities in an image 
(Gonzalez and Woods, 2002).  
 The second stage aims to separate the object of 
interest from other objects or environment. Thus, the 
colour segmentation is based on the HSI (Hue, 
Saturation and Intensity) colour model. These three 
elements can be extracted separately from the RGB 
images. Through this model we aim to obtain the 
colour information from only one plane, which is the 
hue plane, instead of three different planes. This 
simplifies the entire detection mechanism. The hue 
image ),( yxI H , is segmented in order to separate the 
object of interest from the environment.  
 The segmentation process implies the elimination 
of all the colour information that do not belong to a 
threshold interval ),( yxtH . The output image is a 
binary image which respects the following equation: 
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 The two threshold values are dynamically 
computed, as in (Grigorescu, 2010), in order to obtain 
trustworthy object identification. After the 
segmentation, the process continues with detection of 
the object contour in the 2D image plane using the 
chain-code-border method (Bradski and Kaehler, 
2008). There are little chances that the contour of the 
segmented object to be similar to the contour of an 
unwanted shape. 

 The next step is to compute the moments of 
binary image. The moments represent a certain 
particular weighted average of the image pixel’s 
intensities, defined as (Bradski, 2008): 
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where, ),( yxI I   represent the intensity image and 

jiM ,  is the moment for a specific position i, j. Next, 
Hu moments are computed in in order to calculate a 
set of object recognition coefficients which are 
invariant to rotation, scaling and translation. Based 
on this uniqueness, the centre of gravity of the object 
of interest can be computed. Having this scenario 
implemented on the two stereo images, the 3D pose 
of the object can be computed based on the same 
principle as in the triangulation algorithm. In this 
case the projection points Lp  and Rp  are equivalent 
with the centres of gravity gLc  and gRc . 
 
3. Marker-based 3D reconstruction 
evaluation  
 
 In order to evaluate the accuracy of the estimated 
pose of the detected object we used a technique 
highly involved in the Augmented Reality (AR) 
domain. Such methods are intensely applied on 
mobile navigation, active tracking, computer 
tomography surgeries (Rosen and Laub, 1996 ) and 
military training (Urban, 1995). Thanks to the low 
processing cost and reasonable performance, 
accuracy and robustness, the method gained more 
and more popularity in complex robotic applications.  
 
3.1 Ground truth 
 
 The usage of the term ground truth lays on 
complex domains like metrology, aerial photography 
and other remote sensing techniques. It refers to a 
process which compares the sensing information with 
the real information in order to analyse the accuracy 
of the content. 
 In our approach, the ARToolKit pose estimation 
is used as a ground truth in order to analyse and 
evaluate the pose estimation of the detected object.  
 We take as an absolute measurement the pose of 
the marker to which we relate the object pose. Base 
on this observation we determine the accuracy of the 
3D reconstruction method. 
 
3.2 ARToolKit marker detection 
 
 ARToolKit is a complex software library which 
enables a real-time computation of the marker pose 
together with accurate view point estimation.  
 The robust marker detection starts with the 
segmentation of the input image. The algorithm 
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needs only one image from the stereo image pairs, 
left or right, to fulfil the task. The enhancement 
consists in a binarization of the image based on a 
light threshold value. This step eliminates most of the 
unwanted information from the scene. Then, the 
detecting scenario continues with a search of all the 
squares from the image. Because the number of 
squares found is high, ARToolKit eliminates all the 
figures which have a low index of confidence. In the 
kept squares is fitted a specific pattern in order to 
uniquely identify a marker. If the pre-trained pattern 
fits perfectly on the pattern inside the square, the 
detection process receives a confidence note in the 
range 0 to 1. The average confidence mark during the 
tests was ≈0.879. ARToolKit then uses the known 
square size and pattern orientation to calculate the 
position of the real video camera relative to the 
physical marker. A 3x4 matrix M is filled in with the 
video camera real world coordinates relative to the 
card, see Eq. (12): 
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 The rotation matrix R is transformed into a 
rotation vector in order to set the position of the real 
camera coordinates. The translation matrix can be 
used to evaluate the distance between the camera and 
the marker. The bloc diagram of the real-time marker 
detection algorithm is described in Fig. 4. 
 

 
 
Fig. 4. Bloc-diagram of the real time marker detection 
algorithm. 
 
    Thanks to the a-priori information about the size of 
the square, the accuracy of the depth estimation is 
very high, the error ranking around 0.02% (see Tab. 1 
below) (Malbezin et al., 2002).  
 
Tab. 1. Error values for different distances. 
 

Distance (m) 1 1.5 2 2.5 

Error (mm) ± 14 ± 18 ± 22 ± 27 
 

4. Experimental results and analysis  
 
 Through this section, we study the performance of 
a 3D pose and scene understanding technique. First, 
the performance of pose estimation is exanimated 
when the camera pose is changed. Secondly, we 
made a preliminary pose comparison between the 
object detection and 3d reconstruction techniques and 
the pose of the marker detected using ARToolKit® 
library. 
 The real 3D position and orientation of the objects 
were manually determined based on the visual 
marker planted in the scene. The marker was installed 
near the object of interest in order to make easy 
measurement of the object pose relative to the 
marker.  
 A total number of 50 images containing 12 object 
of interest, such as balls, bottles, mugs or books, were 
involved in the evaluation process. All the 
experiments were conducted in an indoor 
environment with a constant illumination. The 
images were captured using a Point Grey 
Bumblebee® stereo camera.  
 In order to get a reliable and stable measurement, 
for both methods, the estimations were calculated 20 
for each frame and averaged the values. In this way 
any noise values are eliminated. The pose of the 
robot has been varied during the scene crossing. 
Relative to the robot pose, the detected object pose 
with respect to the ground truth marker is illustrated 
in Fig. 5. As can be seen from the diagrams, the 
method used for estimate the pose of an unknown 
object shows values very closed to the real 
coordinates along the Cartesian axes. In Tab. 2 are 
shown statistical measures of achieved errors for the 
objects position estimation experiments. The block-
diagram of the proposed scenario is described in 
 Fig.  1. 
 Thanks to the good results obtain during pose 
estimation and object detection, the system under test 
represent a proper method that can be applied in 
usual robotic activities like identifying or grasping. 
 
Tab. 2. Statistical results of the position error for the 
estimated object. 
 

Axis 
eX  

(mm)  
  eY  
(mm) 

eZ  
(mm) 

Max. error 122.2 39 69.7 

Mean 44.61 9.66 67.24 

 
5. Conclusions 
 
 In this paper, we have tested the performance of 
an object detection and 3D reconstruction system for 
real-time scene understanding. The measurement 
technique used showed consistent results in  
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Fig. 5. Comparison of distances between ground truth and estimated object position along all 3 axes. 
 
estimating the performance of the pose estimation 
system. As future work, the authors consider the 
extension of different test strategies as a key element 
in quality assurance measurements. 
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