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a b s t r a c t

Successful path planning and object manipulation in service robotics applications rely both on a good

estimation of the robot’s position and orientation (pose) in the environment, as well as on a reliable

understanding of the visualized scene. In this paper a robust real-time camera pose and a scene structure

estimation system is proposed. First, the pose of the camera is estimated through the analysis of the so-

called tracks. The tracks include key features from the imaged scene and geometric constraints which

are used to solve the pose estimation problem. Second, based on the calculated pose of the camera, i.e.

robot, the scene is analyzed via a robust depth segmentation and object classification approach. In order

to reliably segment the object’s depth, a feedback control technique at an image processing level has been

used with the purpose of improving the robustness of the robotic vision system with respect to external

influences, such as cluttered scenes and variable illumination conditions. The control strategy detailed in

this paper is based on the traditional open-loop mathematical model of the depth estimation process. In

order to control a robotic system, the obtained visual information is classified into objects of interest and

obstacles. The proposed scene analysis architecture is evaluated through experimental results within a

robotic collision avoidance system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Integrating visual perceptual capabilities into the control archi-
tecture of a robot is not a trivial task, especially for the case of ser-
vice robots which have to work in unstructured environments with
variable illumination conditions [1]. As a result of progress in the
research on robot vision and technology development, the use of
vision as a primary perception sensor for providing information for
controlling autonomous systems, such as mobile robots and redun-
dant manipulators, has grown significantly in recent years [1,2]. A
crucial requirement for a robot vision system is the achievement
of a human-like robustness against the complexity of the robot’s
environment in order to provide reliable visual information for au-
tonomous functioning. A robot vision system is used to robustly
analyze images acquired from complex scenes where objects to be
recognized are surrounded by a variety of other objects. As well as
being robust against cluttered scenes, a robot vision system has to
be robust against unpredictability in the appearance of objects due
to different external influences such as variable illumination. The
main requirement for such a visual system is to reliably map the
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imaged scene into a virtual 3D environment that can be used to
infer the future and immediate actions of the robot.

The most common approach to 3D perception, or depth sen-
sation, is through stereo vision. Basically, stereo vision exploits
the geometry between two perspective cameras imaging a scene.
By analyzing the perspective views between the acquired images,
3D visual information can be extracted. Traditionally, stereo vision
is implemented using a pair of calibrated cameras with a known
baseline between their optical points. Having in mind that the ge-
ometrical relations between the two cameras are known, by calcu-
lating the relative perspective projection of object points in both
images, their 3D world coordinates can be reconstructed until a
certain accuracy [3]. The problem of stereo camera position and
orientation (pose) estimation is illustrated in Fig. 1. As a camera
C moves through the Euclidean space, the distances to the imaged
objects, as well as the translation ti and rotationRi ofCi with respect
to its previous poses should be determined from a set of observed
feature points Pj. The pose of the robotic system is inherently ob-
tained once the pose of the camera has been calculated.

1.1. Related work

In this paper, the authors propose a feedback control approach
of a depth estimation system, aiming at compensating the problem
of using constant image processing parameters in complex
environments. The objectives of the proposed architecture are
to reliably extract the objects of interest together with the
camera–objects distances, as well as the pose of the camera while
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Fig. 1. The camera pose (i.e. robot pose) and scene reconstruction problem.

it moves through space. When feedback control techniques are
discussed in connection to robot vision, they are usually put in the
context of controlling a certain system using visual information.
Such devices are typically named Active Vision [4] or Visual Servoing
Systems [5]. There are relatively few publications dealing with
control techniques applied directly on the image processing chain.

The idea of feedback image processing has been tackled pre-
viously in the computer vision community in papers such as [6]
or [7]. One of the first comprehensive papers on the usage of feed-
back information at image processing level can be found in [8],
where reinforcement learning was used as a way to map input im-
ages to corresponding optimal segmentation parameters. In [6], a
hypothesis generation and verification method was developed in
order to calculate interest operators which can be used to locate
target objects, such as bridges, in noisy data. Also, in [7], a feedback
strategy was employed in the self-adaptation of a learning-based
object recognition system that has to perform in variable illumina-
tion conditions. In [9], dynamic closed-loop systems were used to
automatically adapt camera parameters at the image acquisition
stage. In the area of stereo vision, probabilistic methods for the ro-
bust analysis of depth estimation were adopted in [10].

Although the mentioned literature is focused on closed-loop
processing, it does not provide a suitable control framework from
both the image, as well as from the control point of view. Tech-
niques for image processing inspired from control engineering
were used in [11] for adapting a character recognition system, as
well as for a quality control one. In the field of robot vision, the
authors successfully used feedback control concepts to tune re-
gion [12] and boundary [13] based segmentation operations in
order to improve the visual perceptual capabilities of a service
robot [14]. In this paper, feedback machine vision is further inves-
tigated by proposing a closed-loop model of depth sensing based
on the extremum seeking control paradigm set forth in [15]. Its use
is demonstrated in the vision system proposed in this paper.

Camera motion estimation, or egomotion, has been studied
within the Simultaneous Localization and Mapping (SLAM) con-
text [16]. Using detected visual information, motion estimation
techniques can provide a very precise egomotion of the robot. In
SLAM also, the basic sensor used is the stereo camera [17,18]. The
main operation involved in stereo motion estimation is the compu-
tation of so-called correspondence points used for calculating the
3D pose of the robot’s camera. Based on the extracted features, the
robot’s motion can be calculated with the help of estimators such
as the Kalman [19] or Particle Filter [20]. Although for the visual
control of a robot the estimation of its motion is crucial, it is not
treated in this paper since the objective here is to obtain a robust vi-
sual perception of the imaged environment. Nevertheless, in order

to determine the positions and orientations of the visualized ob-
jects with respect to the robot, its pose has been obtained via cor-
respondence points matching, thus neglecting dynamic measures
such as the robot’s velocities and accelerations. Also, the robot’s
pose is needed for fusing the obtained disparity maps in order to
construct a virtual 3D model of the scene.

1.2. Structure and main contributions

The main contributions of the presented paper may be summa-
rized as follows:

1. improvement of the depth estimation process through the in-
clusion of a feedback control technique at the depth map com-
putation level;

2. fusion of closed-loop depth computation with camera pose es-
timation.

This paper is organized as follows. In Section 2, the proposed
theory behind feedback modeling of image processing systems is
presented, followed in Section 3 by a description of the visual
architecture and information flow within the vision system. In
Section 4, the estimation of the imaged scene geometry using the
novel closed-loop depth sensing algorithm is detailed, along with
the fusion of the calculated depth maps. In Section 5, the recog-
nition of objects of interest and obstacles, based on the obtained
depth information and 2D feature extraction, is presented. Finally,
before conclusions and outlook, performance evaluation is given
through experimental results.

2. Feedback control in image processing

In a robotic application, the purpose of the image processing
system is to understand the surrounding environment of the robot
through visual information. Usually, an object recognition and 3D
reconstruction chain for robot vision consists of low and high levels

of processing operations. Low level image processing deals with
pixel wise operations aiming to improve the input images and also
separate objects of interest from background. Both the inputs and
outputs of the low level processing blocks are images. The second
type of modules, which deal with high level visual information,
are connected to low level operations through a feature extraction
component which converts the input images to abstract data
describing the imaged objects. The importance of the quality of
results coming from low level stages is related to the requirements
of high level image processing. Namely, in order to obtain a proper
3D virtual reconstruction of the imaged environment at a high level
stage, the inputs coming from low level have to be reliable.

Traditionally, vision systems are open-loop sequential opera-
tions, which function with constant predefined parameters and
have no interconnections between them. This approach has im-
pact on the final 3D reconstruction result, since each operation in
the chain is applied sequentially, with no information between the
different levels of processing. In other words, low level image pro-
cessing is performed regardless of the requirements of high level
processing. In such a system, for example, if the segmentation
module fails to provide a good output, all the subsequent steps
will fail.

The basic diagram from which feedback mechanisms for ma-
chine vision are derived can be seen in Fig. 2. In such a control
system, the control signal u, or actuator variable, is a parameter
of an image processing operation, whereas the controlled, or state,
variable y is a measure of processing quality.

The design and implementation of feedback structures in ma-
chine vision is significantly different from conventional industrial
control applications, especially in the selection of the pair actuator

variable–controlled/state variable. The choice of this pair has to be
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Fig. 2. Feedback control of an image processing operation.

appropriate from the control, as well as from the image processing
point of view.

In order to derive a control strategy for a machine vision system,
the following discrete nonlinear state-space representation model
of the vision apparatus is suggested:
{

ẋ(k) = f [x(k), u(k)],
y(k) = g[x(k)],

(1)

where x ∈ ℜn is the state vector, u ∈ ℜ is the actuator (input),
y ∈ ℜ is the output vector, f : ℜn ×ℜ → ℜn is the state transition
function and g : ℜn → ℜ is the output function. k represents the
discrete time. Suppose that we have a control law:

u(k) = α[x(k), θ ], (2)

the control problem is to find the optimal parameter θ∗ which
provides an output of desired, or reference, quality. Following the
above reasoning, the closed-loop system:

ẋ = f [x, α(x, θ)] (3)

has its equilibrium point parameterized by θ . Having in mind
the high non-linearity of an image processing system, a control
strategy based on extremum seeking [15] is suggested. Thus, the
goal of the feedback control system is to determine the optimal
parameter θ∗ as the minimum, or maximum, value of the state
vector x:

θ∗ = arg min x(k) or θ∗ = arg max x(k). (4)

The choice of this particular type of control method lies in the fact
that, taking into account the non-linearity of an image processing
system, it is difficult to determine reference values that could
be applied to classical feedback structures. Hence, in the image
processing control approach, the desired state of a vision system
is given by the extremal values of the state vector. In the following,
the proposed model is applied to the depth estimation processed
detailed in the next section.

3. Visual architecture overview

The objective of the proposed visual understanding system is to
robustly estimate, in real-time, the structure of the imaged scene
with respect to the pose of the camera in space. Having in mind
the large amount of information that has to be processed, the
first step in the development of the scene understanding system

is to model the flow of information into a visual architecture. In
Fig. 3, the block diagram of the visual understanding system can be
seen. Basically, the overall architecture has been divided into two
main components, that is, the scene geometry estimation and the
scene understanding modules, both of them explained in the next
sections.

The goal of the scene geometry estimation component is to deter-
mine the pose of the camera while it moves. As shown in Fig. 3, this
procedure is performed using information extracted from stereo
images and grouped into so-called tracks. A track represents the
visual data calculated from a pair of stereo images, as well as the
camera’s a-priori known geometry (e.g. baseline between the two
optical sensors) and internal parameters (e.g. focal length, optical
center, etc.). In the presented system, a track contains the following
information:

• input stereo images IL(x, y) and IR(x, y);
• set of 2D correspondence points pj between IL(x, y) and IR(x, y);
• set of 3D correspondence points Pj calculated from pj;
• stereo camera pose C;
• depth map Id(x, y);
• set of objects of interest Oint ;
• set of obstacles Oo.

In robotic pose estimation, or more particularly camera pose
estimation, the main variables that have to be determined are the
3D positions of the corresponding points Pj and the position and
orientation of the camera Ci.

Pj =
[

xj yj zj
]T

, (5)

Ci =
[

xi yi zi φi ψi θi

]T
, (6)

where points Pj are matched 3D points in the left image of two
consecutive stereo images and T represents the transpose.

Once the 3D positions of the correspondence feature points
have been determined in two adjacent stereo images, the camera
pose can be reconstructed using triangulation, as will be explained
in the next section. In real world applications the computation
of 3D feature points from their 2D correspondence is subjected
to measurement noise, thus the obtained camera pose may
contain errors with respect to its position and orientation. To
cope with these errors, a sparse bundle adjustment technique was
adopted [21]. The goal of bundle adjustment is to recalculate the
pose of the camera based on a minimization algorithm which
takes into account the 3D correspondence points and their 2D
reprojection error over a sequence of tracks. After the camera’s
pose has been determined, the relative distances to the objects
and obstacles can be calculated through computation of so-called
depth maps [22]. This step is a crucial one in the visual system,
since its result influences the behavior of the system with respect
to the scene geometry. The depth map calculation process, together
with its closed-loop enhancement, will be described in Section 4.

Fig. 3. Block diagram of the proposed 3D visual perception system.



Author's personal copy

902 S.M. Grigorescu et al. / Robotics and Autonomous Systems 59 (2011) 899–909

In Fig. 3, the feedback control improvement of the depth sensing
component is represented by the feedback loop illustrated with
dashed line.

Having obtained the pose of the camera and the raw camera–
objects/obstacles distances, the imaged scene can be analyzed with
the purpose of detecting the objects of interest and obstacles rel-
ative to the pose of the camera, or robot. This is accomplished
by the second main module of the proposed vision system, that
is the scene understanding one. The construction of the module
is relatively straightforward, namely, after an object recognition
and classification procedure, the semantics of the environment
are determined based on the context of the scene, as described in
Section 5.

4. Scene geometry estimation

One important problem to be solved in robot localization and
scene understanding is the estimation of the camera’s pose in
the Cartesian space, along with the geometry of the imaged en-
vironment, that is, the camera–objects distances. In order to solve
these problems, two types of depth calculation approached have
been developed. The first one aims at determining correspondence
points between two consecutive stereo images pairs with the pur-
pose of obtaining the relative poses of the cameras with respect
to each stereo pair. The second depth calculation method has as
goal the estimation of the scene structure with respect to the al-
ready calculated poses of the camera. The two approaches have
been named sparse and dense depth estimation, respectively.

4.1. Camera and measurement models

The model of the stereo camera used in sensing the robot’s
environment is illustrated in Fig. 4. A real world point represented

in homogeneous coordinates P =
[

X Y Z 1
]T

is projected
onto the image planes of a stereo camera as the homogeneous 2D
image points:
{

pL =
[

xL yL 1
]T

,

pR =
[

xR yR 1
]T

,
(7)

where pL and pR have the 2D coordinates (xL, yL) and (xR, yR)
projected onto the left IL and right IR images, respectively. The pL

and pR 2D image positions are given by the intersection with the
image plane of the line connecting point P in world coordinates
with the optical centers OL and OR of both cameras, as shown in
Fig. 4. The image, or principal plane, is located at a distance f from
the optical center of a camera. f is commonly known as the focal
length. The z axis of the coordinate system attached to the optical
center is referred to as the principal ray, or optical axis. The principal
ray intersects the image plane at image center (cx, cy), also known
as the principal point. The origin of the image coordinate system is
defined as the image top-left corner (x0, y0).

Knowing pL, pR and the distance T between the optical centers of
the two cameras, the distance, or depth, Z from the stereo camera
to point P can be calculated, thus obtaining the 3D position of
P with respect to the camera. Having in mind the perspective
projection of P onto the image planes, given by pL and pR, the 3D
position of P is determined using the next three formulas:

X = xL ·
T

d
, (8)

Y = yL ·
T

d
, (9)

Z = f ·
T

d
, (10)

where d is the disparity of the projected point P:

d = xL − xR. (11)

Fig. 4. Principle of depth estimation of a point P on a pair of rectified and

undistorted stereo images.

� �

�

Fig. 5. Camera pose estimation through correspondence calculation. (a) Consecu-

tive pose estimation principle (b) 2D feature points calculation. (c) 3D feature points

and camera pose estimation.

From Eq. (10) it can be observed that the distance is inversely
proportional to the disparity. Since we have considered rectified
images as inputs, that is, images with parallel rows, the disparity
d is given only by the difference between the point coordinates on
the x image axis.

4.2. Sparse feature points depth estimation

The goal of 3D depth estimation for feature points in consecu-
tive stereo images is to obtain a relationship between the poses of
the stereo camera. This relation is established based on the princi-
ple illustrated in Fig. 5(a). Namely, the new camera pose C(k+1) is
determined with respect to the previous one C(k) by evaluating the
correspondence points between the left and right stereo images
and between the left images corresponding to C(k) and C(k + 1).
The pose of the right image sensor differs from the left one only
along the x position of the Cartesian space. This difference is rep-
resented by the baseline T between the two sensors of the stereo
camera.
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First, for camera pose estimation, the 2D correspondence points
p between the left and right stereo images are calculated. 2D fea-
ture points have been extracted via the Harris corner detector [23],
followed by a correspondence matching using a traditional cross-
correlation similarity measure [24]. Their corresponding 3D po-
sitions are obtained using Eqs. (8)–(10). Second, a matching is
performed between the 2D feature points in consecutive stereo im-
ages, that is between images acquired under camera poses C(k)
and C(k + 1). As convention, these matches are calculated for
the left camera only. Knowing the 3D positions of the 2D points
matched between adjacent images, the pose of the camera can be
calculated through a Perspective-N-Point (PNP) algorithm [3]. By
solving the PNP problem, the rotation R and translation t matrices
that relate the camera’s poses are obtained:

C(k + 1) = R · C(k) + t. (12)

In order to solve the PNP problem, a minimum number of 7
correspondence points between C(k) and C(k + 1) have to be
calculated. In Fig. 5(b), and example of 2D feature points extraction
and their calculated 3D positions is illustrated. Using the feature
points and the above explained principle, the pose of the camera
can be estimated, as seen in Fig. 5(c). As will be explained in
Section 4.4, the obtained poses will be used for the fusion of the
calculated depth maps.

4.3. Dense closed-loop depth estimation

Once the pose of the camera has been determined, the 3D
structure of the imaged scene can be reconstructed with respect
to the position and orientation of the camera, i.e. with respect to
the robot’s pose.

In order to properly compute the camera–object distance Z ,
it is needed to establish the location of each 2D point, or pixel,
p(x, y) in each stereo camera image, namely, the 2D image points
pL and pR. The correspondence problem is currently one of the
most investigated issues in stereo vision. In literature, there
are a number of dense correspondence calculation methods, a
comprehensive classification being available in [22]. In this paper,
we have chosen to control the so-called Block Matching (BM)
algorithm with the goal to obtain reliable 3D scene information.

BM is one of the most popular correspondence matching
algorithm used in robotics, its main advantage being the fast
computation rate, in comparison to more advanced techniques
such as Graph-Cuts (GC) [22] or Semi-Global-Matching (SGM) [25].
Although BM has certain sensitivity to illumination conditions, its
computation property makes the method a good candidate for real-
time autonomous systems. In this paper, points are matched by
calculating a Sum of Absolute Differences (SAD) over small slid-
ing windows. The BM method is commonly performed in three
steps. In our implementation we have considered the following
operations:

• Pre-filter the input images with a 7 × 7 sliding window, con-
taining a moving average filter, to reduce lighting differences
and enhance texture.

• Compute SAD over a sliding window.
• Eliminate bad correspondence matches through post-filtering.

As shown in Fig. 4, the SAD values are calculated using a window
shifted in the right images along the interval:

H = [dmin, dmax], (13)

where H is referred to as the horopter, defined as the 3D volume
covered by the search range of BM. The goal of computing SAD is
to find the best matching candidate of point pL in the right image,
that is pR, as:

m =
∑

x,y

[IL(x, y) − IR(x + d, y)], (14)

� �

Fig. 6. Depth estimation via block matching. (a) Disparity map obtained with

qr = 16. (b) 3D reprojected disparity map.

where m is the SAD, or match, value and d ∈ H . By calculating
SAD over H , we obtain a characteristic in which its maximum rep-
resents the best match candidate of pL in the right image. Because
of the linearity of the equation, SAD is a faster computational ap-
proach to BM, as opposed to other metrics such as the Zero Mean

Normalized Cross-Correlation (ZNCC), or the Sum of Squared Differ-

ences (SSD) [22].
Post-filtering aims at preventing false matches, hence false

disparity maps. For filtering bad matches, a uniqueness ratio
function is used, defined as:

qr =
(m − mmin)

mmin

, (15)

where mmin is the minimum SAD, or match, value. A feature is
considered a match if:

qr > Tq, (16)

where Tq is a predefined uniqueness threshold value. In [26], the
value of the uniqueness threshold is suggested to be Tq = 12.
As it will be shown latter in this section, a predefined constant
value of Tq poses problems in 3D reconstruction since, depending
on the imaged scene, it can introduce a large number of outliers
in the reconstructed 3D model, or a too few number of voxels. To
overcome this problem, we propose a feedback control method
for the uniqueness threshold Tq. The output of BM is a gray
level image Id(x, y), also referred to as the disparity map, where
the levels of gray represent different distances. In Fig. 6(a), the
disparity map calculated for the typical cluttered service robotics
scene from Fig. 5(b) is presented. The pixels from Fig. 6(a) with a
higher brightness are considered to be closer to the camera. Also,
the pixels for which no correspondence could be calculated are
represented as white. The 3D reprojected scene is illustrated in
Fig. 6(b).

The main problem with the open-loop depth estimation system
described previously is its low performance with respect to
variations in the scene structure, such as variable illumination
conditions or clutter. An example of using constant parameters of
depth estimation is illustrated in Figs. 6 and 7. As said before, one
of the main factors that influences the depth estimation process
is the threshold value Tq of the uniqueness ratio qr . If Tq has an
optimal predetermined value, as in Fig. 6(a), the reconstruction
from Fig. 6(b) is fairly reliable, having in mind that we operate only
with a pair of images. On the other hand, if the scene parameters
change, or Tq has a suboptimal value, 3D reconstruction might fail,
as shown in Fig. 7. For a large value of Tq, as in Fig. 7(a,c), the 3D
results have a low number of object voxels, whereas for a high Tq

the number of obtained outliers is too large, as in Fig. 7(b,d).
Although there are a number of parameters that could be

controlled, we have considered the depth estimation process, for
simplicity, as a Single Input Single Output (SISO) model.

The depth sensing process has been modeled as the nonlinear
system from Eq. (1). For the sake of clarity, the state vector
x is considered to have only one element which describes the
behavior of the modeled process. Since, depending on the chosen
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Fig. 7. 3D reconstruction results from suboptimal values of Tq . (a) Tq = 68. (b)

Tq = 4. (c, d) 3D reprojected scenes.

� � �

Fig. 8. Depth segmentation using H = [0.7 m, 1.5 m] and different uniqueness

thresholds. (a) Optimal qr = 16. (b) Over-segmented qr = 68. (c) Under-segmented

qr = 4.

uniqueness threshold Tq, we obtain a different disparity map
Id, as shown in Fig. 7, a straightforward way to derive a state
variable for the system is to quantify Id. In this paper, we suggest
the quantification of Id through distance, or depth, segmentation.
A segmented distance is represented by the region thresholded
image Ith(x, y) obtained from the segmentation of the disparity
map Id.

Depth segmentation can be implemented by specifying a range
interval of interest H , also entitled horopter, where the desired
objects reside. Using Eqs. (8)–(10), the horopter can be translated
from real world metric units to pixel values that map depth in the
disparity image Id. In Fig. 8, three segmentation examples using a
horopter H = [0.7m, 1.5m] and different uniqueness thresholds
are illustrated. As can be seen, only the segmentation result from
Fig. 8(a) corresponds to optimal segmentation, the other two being
either over- or under-segmented.

Using the above described depth segmentation principle based
on region segmentation, the problem of controlling the quality of
the disparity map Id is converted into the problem of controlling
the quality of the segmented image Ith. A region segmented image
is said to be of good quality if it contains all pixels of the objects of
interest forming a ‘‘full’’ (unbroken) and well shaped segmented
object region. Bearing in mind the qualitative definition of a
segmented image of good quality, the quantitative measure of
segmented quality in Eq. (17) has been used:

im = − log2 p8, im(0) = 0 (17)

where p8 is the relative frequency, that is, the estimate of the prob-
ability of a segmented pixel to be surrounded with 8 segmented
pixels in its 8-pixel neighborhood:

p8 =
no. of seg. px. surrounded with 8 seg. px.

total no. of seg. px. in the image
. (18)

Keeping in mind that a well segmented image contains a
‘‘full’’ (without holes) segmented object region, it is evident from
Eq. (18) that a small probability p8 corresponds to a large disorder
in a binary segmented image. In this case, a large uncertainty im is

Fig. 9. The uncertainty measure im of segmented pixels vs. uniqueness threshold

Tq .

assigned to the segmented image. Therefore, the goal is to achieve a
binary image having an uncertainty measure im as small as possible
in order to get a reliable depth segmentation result.

The depth estimation system was modeled according to Eq. (1),
where the involved variables are:

x =
[

im qr

]T
, (19)

y = Id(x, y), (20)

u = qr(im, Tq). (21)

In Fig. 9, the input–output (I/O) relation between the state
variable im and the actuator parameter Tq is displayed for the
case of the scene from Fig. 6. The goal of the proposed extremum
seeking control system is to determine the optimal value T ∗

q which
corresponds to the minimum of the curve in Fig. 9. T ∗

q represents
the desired value of the uniqueness threshold. The shape of the
obtained I/O curves, as can also be seen from Fig. 9, preserve
the controllability of the system, since the value of the actuator
converges to the global minimum representing the equilibrium
set-point of the considered system.

Following the above presented discussion, the block diagram of
the proposed depth sensing system is illustrated in Fig. 10. First,
left and right images are processed in order to establish an initial
depth map. The core of the method is represented by the state
feedback loop which is used to automatically adapt the actuator
parameter Tq in order to obtain consistent depth estimation. Once
the equilibrium set-point has been achieved, the calculated Id is
used to reconstruct the viewed scene in a 3D environment by
reprojecting the voxels using Eqs. (8)–(10).

Although the proposed feedback depth estimation method has
been developed around the SAD approach, its adaptation to other
metrics, such as ZNCC or SSD, is direct since only the matching cost
function is changed, the other BM parameters remaining the same.
The feedback improvement of more advanced correspondence
matching algorithms, such as GC or SGM, should be investigated,
their research being out of the scope of this paper.

4.4. Depth maps fusion

Having obtained both the location of the robotic system through
camera pose estimation and the optimal depth maps correspond-
ing to each camera pose, a virtual 3D model of the imaged en-
vironment can be reconstructed by fusing these two pieces of
information together [27].

Basically, the concept for this fusion problem is to project each
calculated depth map in a virtual 3D space where each voxel’s 3D
location is related to its corresponding estimated camera pose. The
advantage of using the closed-loop calculated depth images is that
the annotated 3D model contains less noise, since the noisy voxels
are filtered out by the feedback adaptation algorithm.

One major problem that has to be solved in depth map fusion
is the redundant information coming from overlapping projected
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Fig. 10. Block diagram of the proposed feedback control system for robust depth estimation.

� � �

�

Fig. 11. Depth maps fusion example. (a–c) Snapshots of the imaged environment. (d) Annotated 3D model.

disparity images. In order to save computation time, we have
considered as valid voxels those ones visible in the newest images
acquired from the stereo camera. In case newer voxels overlay
voxels from previous camera poses, the older ones are discarded
from the 3D model. Although this approach may seem as a brute
force one, it provides enough accurate collision detection results
for an autonomous service robot. An example of depth maps fusion
within a robotic scene is given in Fig. 11.

The obtained annotated 3D model contains crucial information
for autonomous service robots which have to navigate or manip-
ulate objects in complex and uncertain environments. As will be
shown in Section 6.3, the 3D virtual scene can be used to detect
obstacles and plan the movements of a redundant autonomous
manipulator.

5. Scene understanding

The final stage in the visual architecture proposed in this
paper is the recognition and classification of the visualized objects
of interest and obstacles. For this purpose, a classical Minimum
Distance Classifier [24] has been used. The features used to build
the feature vectors are composed of the distance obtained from the
method described in Section 4, the color of the objects extracted
from the HSV (Hue, Value, Saturation) plane of the acquired images
and the invariant moments of the color segmented objects.

The 2D segmentation of the objects has been performed on
the left image of the acquired stereo image pair using the robust
color segmentation algorithm described in [12] for the case of
uniform colored objects. Also, for textured objects, such as book,
the boundary detection method from [13] has been used. The
main objective of the segmentation procedure is to determine the
class of objects and their key points of interest. Depending on the
obtained class, in can be inferred whether or not the object can be
manipulated (e.g. bottle, glass, book, etc.). Once this manipulative
feature is computed, key points are calculated with the goal to
be used for the visual guidance of a robotic system. As will be
described in the next section, such a system can be a redundant
manipulator which has the task of object grasping.

In Fig. 12, an example of object segmentation, classification
and key feature points extraction can be seen. The key points are
represented in Fig. 12(b) by the bold blue and green points. As can
be seen, depending on the object class, either region or boundary
based segmentation has been used for its detection.

�

�

Fig. 12. Region and boundary based object recognition. (a) Input image. (b)

Recognized bottle and book objects. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

6. Performance evaluation

In order to test the capabilities of the proposed visual system,
the performance evaluation procedure has been divided into
three parts. First, a comparison between the proposed closed-loop
depth estimation algorithm and an open-loop counterpart is given.
Second, the overall 3D machine vision architecture is evaluated
with respect to object pose detection. Finally, the advantage of
using the vision platform for the visual control of a redundant
manipulator arm is presented in the context of obstacle avoidance
path planning.

The evaluation procedure involved a number of 500 images
containing 35 objects of interest, such as bottles, glasses, or
books, acquired using a Bumblebee r©pre-calibrated stereo camera
working at a rate of 16 Frames Per Second (FPS). An example of
such a test scene is illustrated in Fig. 5(b). The illumination used
ranged in the interval [15, 1200 lx]. This range of illumination
corresponds to a variation of the light intensity from a dark room
lighted with candles (15 lx) to the lighting level of an office and
above. According to the European law UNI EN 12464, the optimal
lighting level of an office has a value of 500 lx.

6.1. Closed-loop vs. open-loop depth estimation

In order to give a qualitative evaluation of the proposed closed-
loop depth computation algorithm, the method has been compared
with the traditional approach which uses constant parameters for
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Fig. 13. Closed-loop vs. open-loop disparity computation. (a) Variation of the

uniqueness threshold Tq . (b) Signal-to-Noise-Ratio of disparity areas.

the calculation of the disparity map. As explained before, a good
depth map is one that contains dense, or ‘‘full’’, disparity areas with
a minimum amount of noise, as in Fig. 6. In this work, the noise is
represented by small disparity areas which perturb the 3D model,
as in the example from Fig. 7(b). On the other hand, a depth map
should contain as many ‘‘full’’ areas as possible, that is, to maximize
the amount of processed 3D visual information.

Mathematically, the depth map quality index can be expressed
as a Signal-to-Noise-Ratio (SNR) between the total sum of pixels in
disparity areas Atotal and the sum of pixels in noisy areas Anoisy:

SNR =
Atotal

Anoisy

, (22)

where an area is considered to be noisy if it has a value lower than
a specific threshold. The threshold has been set to the heuristically
determined value of 100 px. The extraction of the areas was
performed via a pixels connectivity evaluation [24].

The closed-loop variation of the uniqueness threshold Tq is
represented in Fig. 13(a), opposed to a manually chosen constant
value of Tq = 16. The corresponding SNR diagram is illustrated
in Fig. 13(b). As can be seen from the diagram, the SNR index has
a larger value for the case of closed-loop depth estimation, as for
the constant value of Tq. The improvement of the 3D model is also
visible through the mean value of the SNR, which for closed-loop
has a value of 59.2105 in comparison to 41.6336, representing to
open-loop situation.

In a robotic application, the main advantage of the closed-loop
depth estimation system is the noise reduced annotated 3D model
which can be used for on-line obstacle avoidance. Such a path
planning example will be given in Section 6.3 for the case of a
redundant manipulator arm.

6.2. Evaluation of the overall vision architecture

The evaluation of the overall machine visual system has been
performed with respect to the real 3D poses of the objects of
interest. The real 3D positions and orientations of the objects of
interest were manually determined using the following setup. On
the imaged scene, a visual marker, considered to be the ground

truth information, was installed in such a way that the poses of the

�

�

Fig. 14. Estimated positions (a) and orientations (b) of the stereo camera.

objects could be easily measured with respect to the marker. The
3D pose of the marker was detected using the ARToolKit library
which provides subpixel accuracy estimation of the marker’s
location with an average error of ≈ 5 mm [28]. By calculating
the marker’s 3D pose, a ground truth reference value for camera
position and orientation estimation could be obtained using the
inverse of the marker’s pose matrix. Further, the positions of the
imaged objects, as well as the camera pose, were calculated using
the proposed system which includes the feedback mechanisms for
depth estimation. Both results, that is camera and objects poses,
were compared to the ground truth data provided by the ARToolKit
marker.

In Fig. 14, camera pose estimation results obtained using the
two methods, that is through the proposed method and via
the ARToolKit marker approach, are presented. As can be seen
from both diagrams, the marker-less pose estimation algorithm
described in this paper delivered a camera position (Xc, Yc, Zc)
closely related to the ground truth values (Xm, Ym, Zm) obtained
from the marker. Also, the calculated orientations (φc, ψc, θc)
followed the reference ones (φm, ψm, θm). This correlation can be
easily observed when analyzing the statistical error results, given
in Table 1, between the two approaches. Namely, for both the
position and orientation, the errors are small enough to ensure a
good spatial localization of the robot and also to provide reliable
depth maps fusion.

In order for a robotic system to manipulate objects of interest,
their 3D pose has to be precisely determined. As for the case
of camera position and orientation evaluation, the pose of the
objects has been also determined with respect to the ground truth
marker. In Fig. 15 the estimated positions of the imaged objects
of interest are shown together with their real positions measured
with respect to the marker. Since only the position has been
varied, the orientation remaining constant, the diagrams in Fig. 15
illustrate only different objects positions with respect to the pose
of the camera system. Statistical results of 3D position estimation
errors are given in Table 2.

As can be seen from Table 2, the mean 3D position error has
a value of (0.0443, 0.0264, 0.0059 m) which is in many cases
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Table 1

Statistical results of errors between proposed and marker based 3D camera pose estimation.

Xe (m) Ye (m) Ze (m) φm (deg) ψm (deg) θm (deg)

Max error 0.0497 0.0595 0.1015 4.2348 5.6915 10.1187

Mean 0.0135 0.0140 0.0429 0.7887 0.7247 0.6765

Std. dev. 0.0211 0.0207 0.0642 2.3029 2.6090 5.5249

� � �

Fig. 15. Real (reference) and estimated positions of objects of interest along the three Cartesian axes (X, Y , Z).

Table 2

Statistical results of 3D position estimation errors for the considered objects of

interest.

Xe (m) Ye (m) Ze (m)

Max error 0.3006 0.2227 0.1074

Mean 0.0443 0.0264 0.0059

Std. dev. 0.1190 0.1082 0.1198

tolerable for object manipulation. Nevertheless, the maximum
achieved error, at image sample 204 has a high value of (0.3006,
0.2227, 0.1074 m). Although the pose of the camera at that
particular sample has a small 3D error, the position of the object
detected at that instance is unreliable for robotic manipulation. It
is interesting to notice that the object position error is correlated
to the camera–object distance along the Z Cartesian axis. As it can
be seen from Fig. 15(a), the Z position of the camera at sample
204 is at its highest value of 2.78 m from the considered object.
The high object position error comes in this case from the object
triangulation algorithm. Namely, a small error in manipulative key
points calculation, explained in Section 5, exponentially increases
the final 3D object position error when the camera–object distance
increases. Since in a robotic system the camera is attached to the
robotic platform, the objects of interest are usually imaged in a
close range for the purpose of object manipulation.

6.3. Visual control of a redundant manipulator

The visual architecture proposed in this paper was also success-
fully used within a robotic collision avoidance system. In order to
avoid collisions in a dynamic scene, a robotic system has to reliably
detect the poses of objects and obstacles such that it corrects its
movement in real-time [29]. For demonstrating the collision avoid-
ance capabilities, we have chosen to treat all detected objects as
obstacles. Thus, the goal of the robot is to maintain a certain kine-
matic configuration in the Cartesian space based on acquired visual
information.

The robotic system has been modeled using a 7 Degrees-of-

Freedom (DoF) manipulator arm in a Denavit–Hartenberg config-
uration, as shown in Fig. 16. The arm used for experiments is a
Robotnik r©manipulator which is a part of the RESCUER r©robotic
platform. The camera system is located at a fixed pose C with re-
spect to the base of the manipulator arm.

In our implementation, the collision avoidance system has
been configured as two algorithms. The first one keeps both the
position and the orientation of the Tool Center Point (TCP) constant,
while the second one maintains constant only the position or the

Fig. 16. Experimental setup for real-time collision avoidance.

orientation. This second case is represented by such collisions
that cannot be avoided if the arm’s pose is kept constant. Both
approaches are illustrated in Fig. 16, where the objective of the
robot control system is to hold the pose of the grasped object while
an obstacle moves in the direction of the arm.

In order to determine a collision free configuration for the
robotic arm, the control method calculates the distance d1 between
the surface normal of the detected object to the so-called collision

point Pc . Pc is represented by the point on the manipulator arm
nearest to the object. Further, we have considered the variable
d2 represented by the distance between the TCP and the joint
closest to Pc , starting from the base of the robotic arm. The
collision avoidance implementation is based on the following two
constraints:

1. maximize the distance d1;
2. maintain a constant distance d2.

During on-line operation, the system determines the two joints
qa and qb that must be controlled in order to maximize d1 and
keep d2 constant. These joints are obtained by evaluating their
impact, if actuated, on the variation of d1 and d2. Mathematically,
the variation is expressed as the derivative of the two considered
distances, ḋ1 and ḋ2. Hence, in order to determine qa and qb, the
collision avoidance algorithm optimizes the following criteria:

[

qa

qb

]

=

{

arg max ḋ1,

arg min ḋ2.
(23)
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Fig. 17. Performance evaluation results for the proposed collision avoidance

system, in a 7-DoF manipulator arm. (a) First three reference q∗
i and real qi

joint angles. (b) Reference (X, Y , Z) and real (X∗, Y ∗, Z∗) position of the TCP. (c)

Cumulated position error of the TCP.

The desired positions of the joints between the base of the robot

and the collision point are determined by solving the system:

{

d1(q) = d∗
1,

d2(q) = d∗
2,

(24)

where d∗
1 is the reference safe distance from the detected object to

the robot arm and d∗
2 the initial distance between the TCP and the

joint nearest to Pc , starting from the base of the manipulator. The

vector q is defined as:

q = [qi
a qi

b]
T, (25)

where i is the number of joints of the manipulator arm. Further,

the desired positions of the other robotic joints are calculated using

the considered inverse kinematic model. The solution of Eq. (24) is

determined through the following recursive equation:

q
i+1 = q

i + J
−1(qi) · δF(qi), (26)

where:

δF(qi) = F(qi) − F
∗, (27)

� � � � �

���

���

���

Fig. 18. Robot–obstacle distance behavior during experimental evaluation.

F(qi) =
[

d1(q
i) d2(q

i)
]T

, (28)

F
∗ =

[

d∗
1 d∗

2

]T
, (29)

J(qi) =









∂d1

∂qa

∂d2

∂qa

∂d1

∂qb

∂d2

∂qb









, (30)

where F is the system matrix of Eq. (24), F∗ is the solution of F and
J represents the Jacobian of F .

In Fig. 17, an example of collision avoidance using the proposed
method is illustrated. In the presented example, at time t =
0.9 s, an obstacle is detected. The control method then triggers
the system to recalculate the desired joints angles, depending
on the direction of the obstacle, as described above. Since the
TCP’s pose must be maintained, only the first three joints of
the manipulator are controlled, the other four being feed with a
constant reference angle. As can be seen, the real joints values qi

follow the desired reference values q∗
i . Also, as shown in Fig. 17(b),

the real position (X, Y , Z) of the TCP is also consistent with their
desired values (X∗, Y ∗, Z∗). Finally, it can be seen from Fig. 17(c)
that the cumulated TCP position error is low, with a maximum
value below 5 mm.

The behavior of the robot with respect to the obstacle distance
d1 is illustrated in Fig. 18. In order to maintain a safe distance
between the robot and the detected object, or obstacle, the value
of d1 should be keep above a predefined safety distance d∗

1 . As
can be seen from Fig. 18, once the probability of a collision has
been determined at t = 0.9 s, the collision avoidance system
starts controlling the manipulator arm with the goal to increase
d1 above the value of d∗

1 . In our experiments, we have considered
the minimal safety distance to be d∗

1 = 150 mm.

7. Conclusions and outlook

In this paper, a robust visual perception system for service
robotics applications has been proposed. The goal of the architec-
ture is the reliable extraction of pose and depth information that
can be used in autonomous systems, such as mobile manipulators.
The main feature of the visual platform is the closed-loop improve-
ment of the depth sensing system. The robust depth estimation ap-
proach plays a crucial role in scene reconstruction tasks where the
correct detection of objects of interest and obstacles is needed. The
proposed system has been successfully tested within a collision
avoidance architecture for a 7-DoF robotic manipulator. As future
work, the authors consider the extension of the theoretical aspects
of closed-loop image processing to other visual tasks, such as ro-
bust object recognition and classification. Also, the aspects of cam-
era motion dynamics and visual information fusion will be further
investigated for the improvement of the proposed visual percep-
tion system.
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