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Abstract— In this paper, a mobile device based system for 

recognizing speed limit and end of restriction traffic signs is 

proposed in the context of data acquisition for the real-time 

enhancing of navigation maps. Once recognized, the traffic signs 

are stored on a cloud server and used for updating the geospatial 

information of the open source OSM maps. 

The approach is mainly divided into two stages, namely, i) 

detection and ii) recognition. The detection is achieved through a 

boosting classifier, while the recognition is performed via a 

probabilistic Bayesian inference framework that fuses 

information delivered by a collection of visual probabilistic 

filters. The stability of the system is evaluated against a ground 

truth database. 

 

Keywords— traffic sign recognition; Bayesian inference; open 

street maps 

 

I. INTRODUCTION 

In this paper, a speed limit and end of restriction traffic 

sign (TS) recognition system is proposed in the context of 

enhancing Open Street Maps (OSM)  data used in entry 

navigation systems. The algorithm is targeted to run on 

standard commercial smartphones that can be mounted on the 

windshield of the car. The system detects traffic signs along 

with their GPS position and uploads the collected data to 

backend servers, via the phone’s mobile data connection. The 

obtained TSs are further made public within the OSM 

community.  

The recognition of road traffic signs has been a 

challenging problem that has engaged the computer vision 

community’s attention for more than 30 years. According to 

[1], the first study of automated road sign recognition was 

reported in Japan in 1984. Since then, a substantial number of 

methods have been developed for adressing the difficulties of 

detecting and recognizing traffic signs. Recent increases in 

computing power has brought computer vision to consumer-

grade applications, as stated in [2]. As computers and portable 

devices offer more and more processing posibilities, the goal 

of real-time traffic sign recognition on commercial mobile 

devices is becoming feasible. Traffic sign recognition is 

usually performed in three main steps: 

 Identification of Regions of Interest (ROIs) containing 
probable TS; 

 Traffic sign detection within the ROIs; 

 Classification of the detected regions into traffic sign 
classes. 

The detection of the sign is perhaps one of the most 

complex stages in the automatic traffic sign recongition 

system. In turn, traffic sign detection methods are divided into 

three categories: color-based, shape-based and methods based 

on machine learning techniques. For color-based detection, 

the obvious approach is to find ROIs based on the color 

properties of different areas in the input image. The main 

weakness here is the fact that color, as percieved by the 

camera sensor, is very sensitive with respect to the time of 

day, illumination, shadows, weather conditions etc. As an 

example, different color-segmentation approaches have been 

undertaken in [3-6]. In [5], Escalera et al. evaluated the ratios 

between the intensity of a given channel and the sum of all 

RGB channel intensities, claiming that the RGB-HSV 

conversion formulas are non-linear and the computational cost 

involved is too high. In [6], a threshold is applied over the 

HSV color space representation of the image with the goal of 

finding ROIs with a high probability of containing a TS. The 

most common approaches for shape-based detection of traffic 

signs, are the ones using different derivatives of the Hough 

transform, detailed in [7] and [8]. Loy and Barnes [9] have 

proposed a general regular polygon detector based on the so-

called fast radial symmetry. 

One of the most succesful machine learning approach for 

object detection in general, also intensively applied in TS 

recognition, has been the one proposed by Viola & Jones in 

[10], and followed by the discriminative version in [11]. The 

algorithm is based on a cascade of detectors, where each one 

is a chain of boosted classifiers based on Haar-like features. 

Also, Support Vector Machines [12-15] and Deep Neural 

Networks [16-18]  have been used for classifying traffic signs. 

The main contributions of this work can be concluded in 

two folds: first, this paper proposes a filtering and Bayesian 

inference solution for TS detection and recognition which 

provides optimal results on commercial mobile devices.  

 



 

 

Fig. 1. Block diagram of the smartphone based traffic sign recognition system. 

Second, we overcame a challenge in developing TS 

recognition algorithms for a broad range of mobile devices. 

The main challenge of this aspect is to cope with the different 

types of cameras included in smartphones and tablets, these 

cameras providing images of different quality. Although 

successful dedicated devices for TS recognition exist on the 

market, such as the MobilEye detector [19], their algorithms 

are developed ro run only on specific hardware. 

The rest of the paper is organized as follows: in Section II, 

the TS recognition filters are described, followed by their 

fusion presented in Section III. The performance of the 

approach is detailed in Section IV, while conclusions are 

given in Section V. 
 

II. MOBILE DEVICE TAILORED TRAFFIC SIGN RECOGNITION 

 The block diagram of the TSR algorithm is depicted in Fig. 
1. Since the algorithm was developed to run on an Android OS, 
the first operation in the image processing chain is to convert 
the acquired image from the standard Android YUV420sp 
(NV21) format to its RGB counterpart. If the smartphone 
device is equipped with parallel processors (e.g. GPU, DSP, or 
multicore-CPU), then the conversion if performed using 
Google Renderscript, that is, Google’s framework for the 
automatic parallelization of data processing. If no parallel 
processor is available, than the conversion if performed using 
the standard CPU. 

A. Traffic sign detection 

The obtained RGB image gets passed to the detector as a 

24-bit RGB color image  , W HI x y J   of width W and height 

H.  ,x y  are the 2D coordinates of a pixel. 

The detection process is carried out by evaluating the 
response of a cascade classifier calculated through a detection 
window sliding across the image, at different scales. The 
probable traffic sign ROIs are collected as the set of object 

hypotheses  1 2    ,   ,  ...,  nh h hH . The sizes of the computed ROIs  

are governed by two thresholds, Th and Tl, which constrain the 
sliding window to search only for signs whose sizes are within 
these values. Th and Tl are chosen with respect to the probable 
size of a sign, as described in the 2D dimension probability 
filter subsection. 

From the feature extraction point of view, the classification 
cascade has been trained with Extended Local Binary Patterns 
(eLPB), illustrated in Fig. 2, with the local contour patterns 
idea found in [20]. This involves the creation of a ROI mask 
with a 2 pixels radius. Within the mask, which is shifted along 
the input TS sample, 12 neighbors are taken into consideration. 
A comparison of the central pixel with respect to the pixels 
found on the circle is performed. If the pixel on the circle has a 
value greater than the central one, then the value “one” is 
assigned to it, otherwise the value “zero”. From the obtained 
binary result, a 12 digit number is computed. Once the 
procedure is applied on each pixel in the input TS image, a 
normalization of the obtained eLBP features is performed. 

 

 

Fig. 2. Computation of the eLBP features for a 70 Km/h traffic sign sample. 

B.  Probabilistic filters for traffic signs recognition 

The classification of the TS into speed limit classes and end 
of restriction signs is performed by filtering each hypothesis hj 

  H via a series of probabilistic filters  1 2    φ ,  φ ,  ... ,  φm   

and by fusing their responses within a Bayesian fusion 
framework, designed for TS recognition. m is the total number 

of filters applied. Each filter  φi jh , with φi  , returns a 

recognition probability value  0,1 ip  , ip P . Since traffic 

signs have different properties (e.g. speed limits over end of 



restrictions), which can be better evaluated by specific filters, 
the response of each filter is enabled or disabled within the 
Bayesian fusion framework through the activation parameter 

     0,1 b , associated with each  φi jh : 
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In the following a TS will be defined as the quantity S , 

where  , sl eorS S S  is either a speed limit 
slS  or an end of 

restriction sign 
eorS . 

 

1) Position probability filter 

The idea behind the position probability filter is that, using 
a correct smartphone setup, the traffic signs will appear in a 
predictable manner along a sequential series of images, as 
shown in Fig. 3. 

 

Fig. 3.  Four consecutive overlayed frames which highlight the evolution of the 
position and dimension of a traffic sign, as the car gets closer to it. 

Since traffic signs have fixed sizes, defined in each country 
by certain standards, we can assume that, at first, a traffic sign 
will appear small and closer to the center of the image. As the 
car will approach the sign, its dimensions will increase, while 
its position will be shifted to the right border of the image. In 
order to represent the a-priori knowledge of the probable 
position and size evolution of a traffic sign in a sequence of 
images, we have computed, from annotated training TS data, 
the statistical model which defines the probable evolution of a 
sign. The model is defined by the line equation L , as 
illustrated in Fig. 4. 

 

Fig. 4.  Statistical model of the probable TS path in a sequence of images. Each 

traffic sign is represented by a red circle, while the model L  is defined by the 
thick white line. 

Considering  ,cj cjx y  as the center of the current TS 

hypothesis 
jh H  and 

jd  the projection of point  ,cj cjx y  to 

the model L, a position probability measure 
1( | )jp S d  can be 

assigned to each hypothesis 
jh H , thus obtaining a 

confidence value describing the probability of having a TS at a 
certain detection ROI in the image. Using a Gaussian 

probability density function, the 
1( | )jp S d  measure is 

quantified as: 
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where 0p  , since the highest detection probability is given 

by 0jd  . 

 

2) Two-dimensional size probability filter 

 Along with its position, the size of a TS also varies while 
the car moves. We have considered that the mean value is 
linearly dependent on the horizontal coordinate of the sign in 
the image. This means that, as the horizontal coordinate 
increases, the mean value of the dimension also increases. 

Since  ,cj cjx y  is the center of the current hypothesis 
jh H , 

we can use the statistical equation L  to compute the current 

mean size value µsz ( xcj ) for 
jh : 

   2 1

1 1

2 1
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where 
cjx  is the horizontal coordinate of the hypothesis center 

and 
1x  is the leftmost horizontal coordinate of the statistical 

line L . As mentioned in Section II.A, the size of a TS varies 

within the interval  , l hT T . 

 The size of 
jh  has been defined as the singular quantity 

  / 2j w hs h h  , where 
wh  and 

hh  are the hypothesis width 

and height, respectively. The 2 ( | , μ )j szp S s  value is  also 

calculated from a Gaussian probability density function: 
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3) Traffic sign histogram distribution filter 

 This filter has been designed for validating and recognizing 
end of restriction signs (e.g. end of speed limit, end of all 
restrictions, etc.), which, as with speed limits, varies in shape 
depending on the country of origin. The first preprocessing 
step is to consider the gray level image of each hypothesis 

jh H  (Fig. 5a). The second one is to crop the width and 



height of 
jh  by 20%, in order to remove the noise around the 

rim of the sign. 

 

Fig. 5. Elements of the TS histogram based filter. (a) Two real and one false 
end of restriction hypotheses 

1 2, ,j j jh h h  H . (b) Transformed hypotheses. (c) 

Histograms of 
1 2, ,j j jh h h 

. (d) Reference histogram for the end of restriction 

sign. 

 The next step is to rotate the cropped image using an affine 
transformation in such a way that the black line will be vertical 
in the transformed image (Fig. 5b). Once the hypothesis has 

been rotated, its histogram 
jg  is computed along the 

horizontal axis, where each bin represents the sum of the pixel 
intensities over each column of the gray image (Fig. 5c). In 

order to remove outliers, 
jg  is smoothed with a factor 

hf . As 

in the case of the other filters, we have created the statistical 
model histogram in Fig. 5d used as reference histrogram. Since 
the shape of the sign is defined by a centered black line having 
white areas on its left and right sides, the corresponding 
histogram pattern will have two peaks. The histogram 
confidence value is obtained by correlating the input TS 
hypothesis with the reference one. As an example, the 
histogram from Fig. 5c, top row, matched with the reference 

one in Fig. 5d, gave a match probability  3 | 0.96eorp S hist  . 

In the same time, the histogram from Fig. 5c, middle row, gave 
a match probability of 0.93, whereas the one from Fig. 5c, 
bottom row, returned a match probability of 0.27. 

 

4) Shape based probability filter 

 This is also a filter that is applied for validating and 
recognizing end of restriction signs. The principle of detecting 
the skewed black line follows the idea from [21], where the 

goal is to detect the skewed black line l  within an end of 

restriction sign. 
 

 
Fig. 6.  Detection of the skewed black line in an end of restriction sign. (a) 
Diagonal derivative filter. (b) Original hypothesis. (c) Derivative image: the 
negative and positive gray level variations are represented by the blue and red 
lines, respectively. (d) Direction of scanning. (e) Pixels that follow the scanned 
pattern . (f) Detected line. 

 In [21], the entire gray level input image is filtered with the 

horizontal derivative filter  1 0 1 . Since the skewed black 

line is too tilted in the image, we have found that it is more 
efficient to apply the diagonal derivative filter, depicted in Fig. 
6a, on the input TS hypothesis for pointing out the gray level 
intensity variations shown in Fig. 6c. The next step is to scan 
the derivative image in Fig. 6c and identify the line pattern. 

After extracting the pixels that follow the target line model l , 

the Probabilistic Hough Line Transform (PHLT) is used to 
detect the line of the end of restriction sign, as illustrated in 
Fig. 6f. The main issues with the PHLT, related to its 
parameters sensitivity (e.g. distance and angle resolution of the 
accumulator, accumulator threshold parameter, minimum line 
distance and the maximum gap between the two lines), have 

been overcome by applying it within the 
jh H  ROIs. The 

circle c  bounding the model line l  is calculated using the 

counterpart of PHLT, that is, the Probabilistic Hough Circle 
Transform (PHCT). 

 For a single hypothesis jh H , containing a detected line 

jl  and a circle 
jc , the Euclidean distance  ,j jd c l  from the 

center of the circle jc  to the center of the line lj, relative to the 

size of jc , has been computed. We can now assign to each TS 

hypothesis jh H  an occurence probability  4 | ,eor j jp S c l  by 

using a one-dimensional Gaussian probability density function: 
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where 0  . Two examples of detected end of restrictions 

signs are shown in Fig. 7. 
  

 

Fig. 7.  Recognition of end of restriction signs in different backgrounds. 

 

5) Extended LBP (eLBP) probability filter 

The eLBP filter uses the computed local binary patterns, in 

combination with a Multiclass Support Vector Machines 

(Multiclass SVM) classifier, to assign a recognition 

probability for each TS class. The classifier maintains a model 

: d Kf R R , which is a mapping from the input eLBP 

features space to the multiclass domain. The feature vector 

used for training the classifier is composed of the extracted 

eLBP features described in Section II.A. For each TS class, 



the eLBP probability filter provides  a confidence measure 

 5 |slp S eLBP . 

 

6) Color based probability filter 

This filter is designed for validating speed limits traffic 

signs, where a color segmentation approach has been designed 

for detecting the red rim of this type traffic signs. The Ohta 

space thresholding method [5] has been used to segment the 

red color within the original hypothesis 
jh H . The TS 

colors can be classified by using the set of thresholds proposed 

in [5]. Once all the red pixels inside 
jh  have been segmented, 

the algorithm clusters them together in order to remove noise. 

The PHCT is further used for detecting circles at different 

radii. The output of this filter  6 |slp S color  is equal to the 

PHCT matching probability.  

 

III. A BAYESIAN FRAMEWORK FOR FUSING TS DETECTION 

PROBABILITIES 

Once all the filters have been computed, the vector 
containing the returned values for each filter is passed to the 
Bayesian fusion block in order to obtain a final probability for 
each TS class, that is, speed limits and end of restrictions. The 
data fusion problem can be formulated as an estimation of a 
final traffic sign probability, calculated from all the obtained 
probability distributions. As described in the previous section, 

the involved probabilities are the following:  1 | jp S d , 

 2 | ,j szp S s  ,  3 |eorp S hist ,  4 | ,eor j jp S c l ,  5 |slp S eLBP and 

 6 |slp S color , while  , sl eorS S S , where 
slS  is a speed limit 

and 
eorS  an end of restriction TS. 

As mentioned in Section II.B, the speed limits 
slS  and 

end of restriction traffic signs 
eorS  are recognized by 

combining the right set of filters using Eq. (1). Thus 

( | )sl kP S p , where k = 1, 2, 5, 6, is the final probability of 

having a speed limit sign when the 
kp  probabilities are 

computed, whereas ( | )eor kP S p  is an end of restriction TS for 

k = 1, 2, 3, 4. An example for computing the fused a-posteriori 

estimation of the speed limits probability distribution is 

presented in Fig. 8. 
 

 

Fig. 8. The fused a-posteriori probability ( | )sl kP S p  for speed limits TS. 

The following fused probabilities are further obtained 

using Bayes rule for inference: 
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Taking into account the normalization process, the 
denominator in (6) can be eliminated by rewritting the equation 
based on the conditional probability and the assumption of 
conditional independence: 
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Considering for instance the fact that the probability sum of 
having a speed limit traffic sign and not having one is equal to 
unity: 

   | | 1sl k sl kP S p P S p    

by applying Bayes’ rule on the left side of (10) and eliminating 
the denominator, we will end up with: 

       | ( | )jh

k sl k sl sl k slP p P S P p S P S P p S   

while for the end of restriction traffic sign we have: 
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The final estimate for a TS is thus calculated by replacing 
equations (11) and (12) in (8) and (9). 

 

IV. EXPERIMENTAL RESULTS 

The described experiments are focused on the evaluation of 
the detection and recognition stages which make up the TS 
recognition system, as well  as on the overall system tests. The 
algorithm has been tested in two countries, that is, Germany 
and Romania.  

Along with the Android App drive tests, offline tests have 
been performed on a database of 4000 images collected with 
various types of commercial mobile devices (e.g. smartphone 
and tablets). All images have been manually annotated using a 
tool created for this purpose.  



 The following information, summarized in Table I, has 
been calculated within the testing procedure: 

 Number of false positive (FP) – detected hypotheses 
containing no real traffic signs; 

 Annotated but not detected (ND) – traffic signs that are 
not detected in the testing dataset, but are annotated; 

 Number  detected traffic signs (DS) – total number of 
detected traffic signs, also called true positives; 

 Recognition rate (RR) – percentage estimate of 
correctly detected traffic signs. 

TABLE I.   

Test 

 

Country 

FP 

[nr. of traffic 

signs ] 

ND 

[nr. of traffic 

signs] 

DS 

[nr. of traffic 

signs] 

RR 

[%] 

Romania 81 52 1734 85.98 

Germany 74 97 1682 80.23 

 
The recognition rate RR is calculated from a so called 

confusion matrix which encodes the true and false positives of 
each TS class into a 2D matrix having the same number of 
lines an columns. Both the lines, as well as the colums, 
correspond to the number of TS classes. As an example of 
confusion matrix computation, the index [2, 1] is incremented 
if a traffic sign of class 1 (e.g. 5 km/h) is classified by the 
algorithm as belonging to class 2 (e.g. 10 km/h). Ideally, the 
confusion matrix should have positive values only on its main 
diagonal, meaning that all the detections are precise. In order to 
cope with annotated, but undetected TSs, we have added to the 
confusion matrix an extra line and column which’s elements 
get incremented whenever an annotated sign is not recognized. 
A couple of recognized TS, together with their ROIs and 
Bayesian inferred recognition probability, are presented in 
Fig. 9. 

 

V. CONCLUSIONS 

In this paper, a traffic sign recognition system designed for 
commercial mobile devices is proposed. Its main goal is to 
acquire mass TS data which can be latter used for enhancing 
OSM based navigation maps.  

As opposed to classical hardware oriented TS recognition 
systems, the presented approach has been designed to optimaly 
function on a broad scale of mobile devices. As future work, 
the authors consider the further extension of the algorithm to 
other types of TS (e.g. city limits, dynamic TS, give way, etc.), 
as well as their processing on the backend server on which the 
mass TS data is stored. The objective of the backend 
processing is to obtain a 100% accurate TS information within 
the navigation database. This performance can be derived from 
the high number of samples which belong to a single real TS 
instance. 

 
 
 
 
 

      

      

      

      

Fig. 9. Examples of recognized TS together with their Bayesian inferred 

recognition probability 
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