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Abstract- In this paper, we introduce a real time approach for 
object recognition, applying the Faster-RCNN concept in an 
affordable and open source simulator that can be used to train 
and test Deep Neural Networks (DNN) models. The objective is 
to provide to the scientific community a framework where the 
advantages and disadvantages of already published or new 
designed architectures and concepts for object detection can be 
validated. The framework proposes two available configurations 
for implementing DNN algorithms. Our framework provides an 
interface to the TORCS racing game simulator, where the 
deployed methods can be evaluated. Various ground truth 
information can be extracted from TORCS, like the traffic scene 
image, car position on the track, speed or distances between the 
traffic participants.  

I. INTRODUCTION 

The purpose of an object detection algorithm is to be 
accurate and fast in real time environments. Even if the 
available benchmarking datasets are limited [9] compared to 
the datasets available for classification [10], object detection 
can be used to detect the features from a common traffic 
scene (Figure 1).  

Object detection is a more complex task when compared to 
image classification. First, in order to localize the objects 
accurately, numerous candidates for the object’s locations 
should be generated. In the second step, the candidates are 
refined to gain the proper localization. Solving this task may 
lead to issues regarding the processing speed or accuracy.  

Nowadays object detection is based on the success of 
region proposal methods [2], [4] and region-based 
convolutional neural networks [9], [11]. As originally 
developed, region-based convolutional networks were 
computationally expensive. The cost was reduced after the 
concept of sharing the convolutions across layers was 
introduced. 

In this work, we have developed an object detection 
method for a free and real time race simulator, widely used in 
the scientific community, named TORCS. The scope of this 
research was to provide an open source framework to the 
scientific community where various neural networks 
architectures and object detection algorithms can be easily 
tested. 

The Caffe library, developed by Berkeley University of 
California, was used for training and validating DNN 
algorithms. 

 
  

 
Caffe is a fully open-source framework that affords clear 

access to deep neural architectures [12]. The library is written 
in C++, with CUDA used for GPU computation, supporting 
bindings for Python/Numpy and MATLAB. It is well-suited 
for research use, being developed using engineering best 
practice, providing unit tests for correctness, speed for 
deployment and code modularity. It also has an expressive 
architecture that encourages innovation and further 
enhancements through extensible code base. The most 
relevant advantage in using this library is the capacity to 
process aver 60 million images per day, using for example a 
single NVidia K40 GPU. This property makes Caffe one of 
the best choices for industry deployment. 

A. Related work 
Object proposals methods were intensively studied. There 

is a large literature that covers this subject [5], [6], [7]. The 
most popular methods are those based on grouping super-
pixels (e.g. Selective Search [8]) and those based on sliding 
windows. DNNs are used to classify the proposals regions 
into object categories or background.  

The region-based convolutional neural network method 
from [3] was able to achieve good accuracy in object 

 
Figure 1: Common traffic scene with detected objects 



detection, with the cost of some notable disadvantages, like 
an expensive training session in terms of space and time and a 
slow object detection speed (approx. 50 seconds per image). 

Another succesfull approach is Fast R-CNN [2]. It almost 
achieves real-time rates using large scale deep networks, 
while ignoring the time spent on region proposals. The 
proposals were identified as a bottleneck in the detection 
systems. An advantage of the Fast R-CNN method is that it 
can run on GPUs, which is the solution to accelerate the 
proposals computation. 

The latest solution for object detection, known as Faster R-
CNN [4], introduced a region proposal network (RPN) that 
shares full-image convolutional features with the detection 
network. In this way, the time to calculate the proposals was 
significantly reduced. RPN is a fully, end-to-end trained, 
convolutional network that simultaneously predicts the object 
localization and the objects scores. RPN is merged with Fast 
R-CNN into a single network, sharing their convolutional 
features. Region proposal network will decide if there is an 
object or not in the image, and also propose a box location. 
Even if Faster R-CNN achieves real time rates, until now it 
was used only to analyze multiple image streams, not being 
used into a real-time simulator, where the advantages and the 
weakness of this concept can be highlighted. 

      
The main contribution of the work presented in this paper 

can be summarized as follows: 
 Development of a real-time framework where object 

detection methods can be applied and tested. 
 Improve the exiting techniques by optimizing the 

computational speed of the region proposal network. 
 
The rest of the paper is organized as follows. In Section II, 

the formulation of the challenge and the proposed solution are 
stated. The algorithm to interface the game simulator 
framework upon the detection system and the mathematical 
model of the proposed solution is given in Section III. Section 
IV presents experimental results and the conclusions are 
stated in Section V. 

II. PROBLEM FORMULATION 

 The goal of this work is to apply object detection methods 
in a real time simulator were deep neural network algorithms 
can be validated and improved.   

An open-source framework, simulating a car racing 
environment, is developed and provided to the scientific 
community to be used for designing new DNN architectures 
or to test the state-of-the-art achievements in object detection 
technics. To train and validate our object detection algorithm, 
both GPU and CPU configurations were used and a 
comparison between the obtained performances was made. 

 

 
Figure 2:  Block diagram of the proposed open-source 

framework  
 

III. METHODOLOGY 

    The object detection method that developed in our open-
source framework is the combination between a Region 
Proposal Network (RPN) and the concept of Fast R-CNN 
(Fast Region-based Convolutional Network) [2] [4]. One 
advantage of using this architecture is sharing the 
computation between RPN and the Fast R-CNN network, 
using a common set of shared convolutional layers. RPN is a 
fully convolutional network [13] which is designed to predict 
region proposals with a wide range of scales and aspect 
ratios. It takes as input an image and provides a set of 
rectangular objects as output, each with a matching score. 
The novel “anchor” boxes, which serves as a reference for 
proposals, was introduced [4]. RPN provides a sliding 
window that classifies if an object is present or not. This 
window slides on the output of the last shared convolutional 
layer of a pre-trained network, named the output feature map, 
and provides to RPN an n x n spatial window with an input 
convolutional feature map data. Fixed anchor boxes are 
created and classified as been objects or not for every position 
of the sliding window. 
    Fast Region-based Convolutional Network [2] takes as 
input a set of region proposals and the entire image, which is 
processed with several convolutional and max pooling layers 
to produce a feature map. After this step, for each proposed 
object, a region of interest pooling layer (RoI pooling layer) 
extracts from the feature map a feature vector.  As it was 
described in [2], a RoI is a rectangular window in a 
convolutional feature map, being defined by a four-tuple (r, c, 
h, w) that represents the RoI top corner (r, c), height (h), and 
width (w). The RoI layer is a special-case of the spatial 
pyramid pooling layer [15]. 
    An important property of Fast R-CNN is that it trains all 
the network weights with the back-propagation algorithm, 
using a more efficient method that shares features during 
training.  



     
    The loss function for an image used for training our object 
detection algorithm is the following: 
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where i is an anchor index, ip  is the predicted probability of 

an anchor i to be an object or not, *

ip  is the ground-truth 

label, which is 1 if the anchor is positive and 0 if it is 
negative, it  is the parametrized coordinates vector of the 

predicted bounding box, *

it is the ground-truth box which is 

associated with an anchor with a label that equals 1. clsL  is 

the classification loss (logarithmic loss for two classes, object 
and non-object) and regL is the regression loss. The outputs of 

the regression and classification layers are normalized using  

clsN  and regN . Parameter   is used to balance the weights 

computation. 
    In Figure 2 is illustrated how the game simulator and the 
object detection system are merged into a single framework.  
An image with a traffic scene is provided as input for the 
region proposal network. RPN is trained end-to-end to 
generate accurate object proposals that are used for detection 
by a region-based convolutional network. 
   The image received from Torcs is first converted into an 
OpenCV array of 500x375 dimensions and further sent to 
RPN for processing. We developed a multithreading 
environment to speed up the proposals computation. 
    After the proposals are being generated, they become an 
input for the Fast R-CNN algorithm. The objects with the 
highest matching score are detected and marked on the image. 
    Due to the fact that Faster R-CNN is developed using C++ 
(to integrate Caffe) and Python (to develop the layers used for 
object detection) our framework is also based on a C++ 
implementation combined with Embedded Python for an 
easier and faster communication with the Python scripts.  
    Deep neural network DNN was trained using the 
approximate joint training solution [4], merging together Fast 
R-CNN and RPN networks. During each iteration, generated 
region proposals are forwarded, which are treated like as pre-
computed proposals during Fast R-CNN training. Backward 
propagation combines, for the shared layers, the propagated 
loss signals. For training purposes, already existing datasets 
can be used (i.e. Pascal VOC2012 [9] or YOLO [11]) 

    A simplified version our proposed DNN architecture is 
presented in Figure 6, the feature maps are extracted from the 
last convolutional layer of a pre-trained network (in our case 
an ImageNet [14] convolutional neural network model). The 
region proposal network is trained to decide if there is an 
object or not in the RoI. The results are sent to a custom 
Python layer and then the proposals are send to a RoI pooling 
layer. All the proposals are resized to a fixed size and 
processed one by one to determine the best matching score 
for a specific object.  
 

IV. EXPERIMENTAL RESULTS 

    To evaluate our developed real-time framework for object 
detection, validation data from the TORCS racing game 
simulator was used to measure the performance capabilities 
for the DNN technologies. TORCS is an open-source car 
racing simulator that will be described in more details in the 
next section. A multithreading environment was used to 
perform tests regarding the possible use of the designed 
framework in both CPU and GPU configurations. 

 
A. TORCS Environment 

Our research is using an open source framework that can 
become a state of the art for deep learning technology. 
TORCS environment is widely used in the scientific 
community, being a highly portable multi-platform car racing 
simulator. It runs on Linux (all architectures, 32 and 64 bit, 
little and big endian), FreeBSD, OpenSolaris, MacOSX and 
Windows (32 and 64 bit). It features many different cars, 
tracks and opponents to race against. From the game engine, 
we can collect images for object detection and also critical 
indicators for driving, such as the speed of the car, the ego-
car’s relative position to the road’s central line, or the 
distance to the preceding cars [17]. 

The TORCS software architecture identifies three major 
components, as illustrated in Figure 3: Orchestration for 
controlling the major program, TORCS API and Libraries for 
interfaces and Plugins for modules loaded during runtime. 
The State Engine component controls the execution of the 
race configuration, setup, run and shutdown. Understanding 
this component can make some task, like implementing a new 
artificial intelligent agent in the form of a car, very simple. 
The plugins play also an important role in TORCS. 
Rendering, the graphic module interface, is responsible for 
displaying the current sate based on OpenGL. Simulation 
module interface is responsible for progressing the situation 
by a given time step. Another major plugin is Track (Track 
Loader Module Interface) which is responsible for loading 
tracks into Torcs. The game simulator provides also the 
possibility to create tracks for specific purposes. Also new 
developed track will be loaded by the Track plugin. 

The cars are driven into the simulation using the Robot 
(Robot Module Interface) plugin. Torcs can load multiple 
robots at the same time, which can drive multiple cars. One 
robot supports up to 10 cars at once. Various drivers 
implementation are already shipped into the simulator. 

Figure 3:  Torcs Architecture Overview 



Also a “human driver”, which takes input from user to 
control the car, is present in the simulator. 

Deep neural networks technics can be used inside Torcs 
for image classification [1] or as we did, for object detection. 
There are some advantages in using this game simulator from 
which can be highlighted the multitude types of objects that 
can be detected, an easy way to construct new tracks for 
specific purposes, the possibility to construct a new artificial 
intelligent car where new algorithms for path or trajectory 
planning can be applied and another advantage is also the 
possibility to easily provide training and validation data to 
another projects interfaces. 
 
B. Framework validation 

To validate the proposed framework a multithreading 
system was developed. Even if the game simulator is 
multiplatform, the development was done only in Windows 
environment. 

 Traffic scenes representing the environment state, are 
captured from Torcs and are processed in a separate thread to 
speed up the object detection process. Faster R-CNN method, 
that was chosen to develop our framework, is based on layers 
written in a scripting programming language, Python/Numpy. 

To validate our work, an interface between Python and 
the game simulator, which includes also Caffe library and all 
the necessary dependencies, was developed. 
 
The interface was implemented using Embedded Python 
language, which assures a manageable binding with Python 
library. Embedding a scripting language into applications 
offers many benefits, such as the ability to use functionality 

from an embedded language that would otherwise be a 
difficult process. 

The computation of region proposals and object detection 
was made using both CPU and an NVidia GPU, Quadro 
K1100M. This GPU is supporting CUDA but is coming with 
a low performance configuration (Core Speed is 705 MHz, 2 
GB of shared memory and 384 CUDA Cores) and cannot be 
compared with the GPUs communally used in research 
purposes, like Tesla K40 Graphic Card, which provides 12 
GB of memory, or NVidia Titan X, which is driven by 3584 
NVIDIA CUDA cores running at 1.5GHz. The most powerful 
NVidia GPU is Quadro P6000, on which 3840 CUDA cores 
are enabled and provides 24 GB of memory. 

 The architecture used for deep neural network is 
provided in Figure 6 and it was described in the Methodology 
section of this paper. To train the network, Pascal VOC2012 
[9] dataset was used, which contains sufficient data to achieve 
good accuracy for up to 21 different object classes. In this 
paper we have trained the network for all 21 classes, even if 
the main focus is to detect the cars present on track during the 
race.  

 To be able to make a comparison between CPU and 
GPU approaches, performance statistics were done using the 
time needed to detect the objects from an image, for a specific 
number of proposals, time which was calculated inside the 
game simulator. 

Using a CPU configuration is not possible to achieve 
real-time performance. Even with a powerful processor 
(Intel(R) Core(TM i7-4710MQ CPU @ 2.50 GHz, 8CPUs a 
considerable amount of time is needed to process an image 
and to detect the objects. In our tests the average time for  

 
Figure 6: Simplified convolutional deep neural network architecture used for object detection. 

 
 

 

Figure 4: Performance comparison between the CPU configuration 
and GPU configuration  for 100 image samples  

 

Figure 5: Necessary time for image processing using CPU and GPU 
configuration for various number on object proposals 



  
processing was approximately 10 seconds. The time 
necessary to detect the object is depending also on the 
number of the proposals. In Fig.5 can be seen that the time 
value is the smallest when we have less proposals. But the 
variation is not linear, because, as can be observed, for 230 
proposals the necessary time is higher than for the maximum 
number of proposals (in our case, 300).     
    In Figure 4 is represented the performance difference 
between GPU and CPU configurations. Using a GPU for 
object detection will decrease considerably the computation 
time. Even with a low performance configuration of the GPU, 
we get a very high detection rate, comparing with the values 
recorded for CPU mode. The average time to process an 
image was reduce to an average of 0.7 seconds. Taking in 
consideration this result, we cannot say that we achieve to 
make real-time object detection. The performance is limited 
by our hardware configuration, for train and validation was 
used an onboard GPU with 2GB of shared memory. If we will 
take in consideration the performance difference between our 
GPU and the ones used in common DNN research papers (as 
it was stated at the beginning of this chapter), we can observe 
that our GPU performance is minimum 10 times smaller. 
 

V. CONCLUSION 

    The proposed open-source framework can be used to 
validate various types of neural deep network architectures 
using Caffe as development library. Even if this paper was 
based on object detection algorithms that were applied on 
images sampled from Torcs, also the framework can be used 
to solve classification problems, only by changing the deep 
neural network architecture. Even in this work no real-time 
performance was achieved during the tests, due to the 
hardware configuration limitations, a more powerful GPU 
will enable the usage of this framework with success in real-
time environments. We believe that our work will be very 
useful for the scientific community which is interested in 
developing machine learning algorithms, because is providing 
a complete, Windows based, framework for training and 
validation. Most of the scientific researches were done under 
Linux platforms, using only video streams or basic game 
environments (i.e. Atari games [17]). 
    Torcs represents a complex car racing environment that is 
making possible a future industrialization of the algorithms 
developed inside it, to be applicable in the real world.  
   Our framework can be also improved to get a higher 
computational speed, by using C++ language to rewrite the 
layers and modules that in this moment are implemented in  

 
Python language or can be adapted to use a new approach in 
object detection, that is describe in [16].        
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