
Environment perception in racing simulators using
Deep Neural Networks

Liviu Marina

Department of Automation
Transilvania University of Brasov

Brasov, Romania 500240
 @unitbv.ro

Florin Moldoveanu

Department of Automation
Transilvania University of Brasov

Brasov, Romania 500240
@unitbv.ro

Sorin M. Grigorescu

Department of Automation
Transilvania University of Brasov

Brasov, Romania 500240
s.grigorescu@unitbv.ro

Abstract- In this paper, we introduce a real time approach for
object recognition, applying the Faster-RCNN concept in an
affordable and open source simulator that can be used to train
and test Deep Neural Networks (DNN) models. The objective is
to provide to the scientific community a framework where the
advantages and disadvantages of already published or new
designed architectures and concepts for object detection can be
validated. The framework proposes two available configurations
for implementing DNN algorithms. Our framework provides an
interface to the TORCS racing game simulator, where the
deployed methods can be evaluated. Various ground truth
information can be extracted from TORCS, like the traffic scene
image, car position on the track, speed or distances between the
traffic participants.

I. INTRODUCTION

The purpose of an object detection algorithm is to be
accurate and fast in real time environments. Even if the
available benchmarking datasets are limited [9] compared to
the datasets available for classification [10], object detection
can be used to detect the features from a common traffic
scene (Figure 1).

Object detection is a more complex task when compared to
image classification. First, in order to localize the objects
accurately, numerous candidates for the object’s locations
should be generated. In the second step, the candidates are
refined to gain the proper localization. Solving this task may
lead to issues regarding the processing speed or accuracy.

Nowadays object detection is based on the success of
region proposal methods [2], [4] and region-based
convolutional neural networks [9], [11]. As originally
developed, region-based convolutional networks were
computationally expensive. The cost was reduced after the
concept of sharing the convolutions across layers was
introduced.

In this work, we have developed an object detection
method for a free and real time race simulator, widely used in
the scientific community, named TORCS. The scope of this
research was to provide an open source framework to the
scientific community where various neural networks
architectures and object detection algorithms can be easily
tested.

The Caffe library, developed by Berkeley University of
California, was used for training and validating DNN
algorithms.

Caffe is a fully open-source framework that affords clear

access to deep neural architectures [12]. The library is written
in C++, with CUDA used for GPU computation, supporting
bindings for Python/Numpy and MATLAB. It is well-suited
for research use, being developed using engineering best
practice, providing unit tests for correctness, speed for
deployment and code modularity. It also has an expressive
architecture that encourages innovation and further
enhancements through extensible code base. The most
relevant advantage in using this library is the capacity to
process aver 60 million images per day, using for example a
single NVidia K40 GPU. This property makes Caffe one of
the best choices for industry deployment.

A. Related work
Object proposals methods were intensively studied. There

is a large literature that covers this subject [5], [6], [7]. The
most popular methods are those based on grouping super-
pixels (e.g. Selective Search [8]) and those based on sliding
windows. DNNs are used to classify the proposals regions
into object categories or background.

The region-based convolutional neural network method
from [3] was able to achieve good accuracy in object

Figure 1: Common traffic scene with detected objects

detection, with the cost of some notable disadvantages, like
an expensive training session in terms of space and time and a
slow object detection speed (approx. 50 seconds per image).

Another succesfull approach is Fast R-CNN [2]. It almost
achieves real-time rates using large scale deep networks,
while ignoring the time spent on region proposals. The
proposals were identified as a bottleneck in the detection
systems. An advantage of the Fast R-CNN method is that it
can run on GPUs, which is the solution to accelerate the
proposals computation.

The latest solution for object detection, known as Faster R-
CNN [4], introduced a region proposal network (RPN) that
shares full-image convolutional features with the detection
network. In this way, the time to calculate the proposals was
significantly reduced. RPN is a fully, end-to-end trained,
convolutional network that simultaneously predicts the object
localization and the objects scores. RPN is merged with Fast
R-CNN into a single network, sharing their convolutional
features. Region proposal network will decide if there is an
object or not in the image, and also propose a box location.
Even if Faster R-CNN achieves real time rates, until now it
was used only to analyze multiple image streams, not being
used into a real-time simulator, where the advantages and the
weakness of this concept can be highlighted.

The main contribution of the work presented in this paper

can be summarized as follows:
 Development of a real-time framework where object

detection methods can be applied and tested.
 Improve the exiting techniques by optimizing the

computational speed of the region proposal network.

The rest of the paper is organized as follows. In Section II,

the formulation of the challenge and the proposed solution are
stated. The algorithm to interface the game simulator
framework upon the detection system and the mathematical
model of the proposed solution is given in Section III. Section
IV presents experimental results and the conclusions are
stated in Section V.

II. PROBLEM FORMULATION

 The goal of this work is to apply object detection methods
in a real time simulator were deep neural network algorithms
can be validated and improved.

An open-source framework, simulating a car racing
environment, is developed and provided to the scientific
community to be used for designing new DNN architectures
or to test the state-of-the-art achievements in object detection
technics. To train and validate our object detection algorithm,
both GPU and CPU configurations were used and a
comparison between the obtained performances was made.

Figure 2: Block diagram of the proposed open-source

framework

III. METHODOLOGY

 The object detection method that developed in our open-
source framework is the combination between a Region
Proposal Network (RPN) and the concept of Fast R-CNN
(Fast Region-based Convolutional Network) [2] [4]. One
advantage of using this architecture is sharing the
computation between RPN and the Fast R-CNN network,
using a common set of shared convolutional layers. RPN is a
fully convolutional network [13] which is designed to predict
region proposals with a wide range of scales and aspect
ratios. It takes as input an image and provides a set of
rectangular objects as output, each with a matching score.
The novel “anchor” boxes, which serves as a reference for
proposals, was introduced [4]. RPN provides a sliding
window that classifies if an object is present or not. This
window slides on the output of the last shared convolutional
layer of a pre-trained network, named the output feature map,
and provides to RPN an n x n spatial window with an input
convolutional feature map data. Fixed anchor boxes are
created and classified as been objects or not for every position
of the sliding window.
 Fast Region-based Convolutional Network [2] takes as
input a set of region proposals and the entire image, which is
processed with several convolutional and max pooling layers
to produce a feature map. After this step, for each proposed
object, a region of interest pooling layer (RoI pooling layer)
extracts from the feature map a feature vector. As it was
described in [2], a RoI is a rectangular window in a
convolutional feature map, being defined by a four-tuple (r, c,
h, w) that represents the RoI top corner (r, c), height (h), and
width (w). The RoI layer is a special-case of the spatial
pyramid pooling layer [15].
 An important property of Fast R-CNN is that it trains all
the network weights with the back-propagation algorithm,
using a more efficient method that shares features during
training.

 The loss function for an image used for training our object
detection algorithm is the following:

        *** ,
1

,
1

, iireg
i

i

reg

ii
i

cls

cls

ii ttLp
N

ppL
N

tpL    (1)

where i is an anchor index, ip is the predicted probability of

an anchor i to be an object or not, *

ip is the ground-truth

label, which is 1 if the anchor is positive and 0 if it is
negative, it is the parametrized coordinates vector of the

predicted bounding box, *

it is the ground-truth box which is

associated with an anchor with a label that equals 1. clsL is

the classification loss (logarithmic loss for two classes, object
and non-object) and regL is the regression loss. The outputs of

the regression and classification layers are normalized using

clsN and regN . Parameter  is used to balance the weights

computation.
 In Figure 2 is illustrated how the game simulator and the
object detection system are merged into a single framework.
An image with a traffic scene is provided as input for the
region proposal network. RPN is trained end-to-end to
generate accurate object proposals that are used for detection
by a region-based convolutional network.
 The image received from Torcs is first converted into an
OpenCV array of 500x375 dimensions and further sent to
RPN for processing. We developed a multithreading
environment to speed up the proposals computation.
 After the proposals are being generated, they become an
input for the Fast R-CNN algorithm. The objects with the
highest matching score are detected and marked on the image.
 Due to the fact that Faster R-CNN is developed using C++
(to integrate Caffe) and Python (to develop the layers used for
object detection) our framework is also based on a C++
implementation combined with Embedded Python for an
easier and faster communication with the Python scripts.
 Deep neural network DNN was trained using the
approximate joint training solution [4], merging together Fast
R-CNN and RPN networks. During each iteration, generated
region proposals are forwarded, which are treated like as pre-
computed proposals during Fast R-CNN training. Backward
propagation combines, for the shared layers, the propagated
loss signals. For training purposes, already existing datasets
can be used (i.e. Pascal VOC2012 [9] or YOLO [11])

 A simplified version our proposed DNN architecture is
presented in Figure 6, the feature maps are extracted from the
last convolutional layer of a pre-trained network (in our case
an ImageNet [14] convolutional neural network model). The
region proposal network is trained to decide if there is an
object or not in the RoI. The results are sent to a custom
Python layer and then the proposals are send to a RoI pooling
layer. All the proposals are resized to a fixed size and
processed one by one to determine the best matching score
for a specific object.

IV. EXPERIMENTAL RESULTS

 To evaluate our developed real-time framework for object
detection, validation data from the TORCS racing game
simulator was used to measure the performance capabilities
for the DNN technologies. TORCS is an open-source car
racing simulator that will be described in more details in the
next section. A multithreading environment was used to
perform tests regarding the possible use of the designed
framework in both CPU and GPU configurations.

A. TORCS Environment

Our research is using an open source framework that can
become a state of the art for deep learning technology.
TORCS environment is widely used in the scientific
community, being a highly portable multi-platform car racing
simulator. It runs on Linux (all architectures, 32 and 64 bit,
little and big endian), FreeBSD, OpenSolaris, MacOSX and
Windows (32 and 64 bit). It features many different cars,
tracks and opponents to race against. From the game engine,
we can collect images for object detection and also critical
indicators for driving, such as the speed of the car, the ego-
car’s relative position to the road’s central line, or the
distance to the preceding cars [17].

The TORCS software architecture identifies three major
components, as illustrated in Figure 3: Orchestration for
controlling the major program, TORCS API and Libraries for
interfaces and Plugins for modules loaded during runtime.
The State Engine component controls the execution of the
race configuration, setup, run and shutdown. Understanding
this component can make some task, like implementing a new
artificial intelligent agent in the form of a car, very simple.
The plugins play also an important role in TORCS.
Rendering, the graphic module interface, is responsible for
displaying the current sate based on OpenGL. Simulation
module interface is responsible for progressing the situation
by a given time step. Another major plugin is Track (Track
Loader Module Interface) which is responsible for loading
tracks into Torcs. The game simulator provides also the
possibility to create tracks for specific purposes. Also new
developed track will be loaded by the Track plugin.

The cars are driven into the simulation using the Robot
(Robot Module Interface) plugin. Torcs can load multiple
robots at the same time, which can drive multiple cars. One
robot supports up to 10 cars at once. Various drivers
implementation are already shipped into the simulator.

Figure 3: Torcs Architecture Overview

Also a “human driver”, which takes input from user to
control the car, is present in the simulator.

Deep neural networks technics can be used inside Torcs
for image classification [1] or as we did, for object detection.
There are some advantages in using this game simulator from
which can be highlighted the multitude types of objects that
can be detected, an easy way to construct new tracks for
specific purposes, the possibility to construct a new artificial
intelligent car where new algorithms for path or trajectory
planning can be applied and another advantage is also the
possibility to easily provide training and validation data to
another projects interfaces.

B. Framework validation

To validate the proposed framework a multithreading
system was developed. Even if the game simulator is
multiplatform, the development was done only in Windows
environment.

 Traffic scenes representing the environment state, are
captured from Torcs and are processed in a separate thread to
speed up the object detection process. Faster R-CNN method,
that was chosen to develop our framework, is based on layers
written in a scripting programming language, Python/Numpy.

To validate our work, an interface between Python and
the game simulator, which includes also Caffe library and all
the necessary dependencies, was developed.

The interface was implemented using Embedded Python
language, which assures a manageable binding with Python
library. Embedding a scripting language into applications
offers many benefits, such as the ability to use functionality

from an embedded language that would otherwise be a
difficult process.

The computation of region proposals and object detection
was made using both CPU and an NVidia GPU, Quadro
K1100M. This GPU is supporting CUDA but is coming with
a low performance configuration (Core Speed is 705 MHz, 2
GB of shared memory and 384 CUDA Cores) and cannot be
compared with the GPUs communally used in research
purposes, like Tesla K40 Graphic Card, which provides 12
GB of memory, or NVidia Titan X, which is driven by 3584
NVIDIA CUDA cores running at 1.5GHz. The most powerful
NVidia GPU is Quadro P6000, on which 3840 CUDA cores
are enabled and provides 24 GB of memory.

 The architecture used for deep neural network is
provided in Figure 6 and it was described in the Methodology
section of this paper. To train the network, Pascal VOC2012
[9] dataset was used, which contains sufficient data to achieve
good accuracy for up to 21 different object classes. In this
paper we have trained the network for all 21 classes, even if
the main focus is to detect the cars present on track during the
race.

 To be able to make a comparison between CPU and
GPU approaches, performance statistics were done using the
time needed to detect the objects from an image, for a specific
number of proposals, time which was calculated inside the
game simulator.

Using a CPU configuration is not possible to achieve
real-time performance. Even with a powerful processor
(Intel(R) Core(TM i7-4710MQ CPU @ 2.50 GHz, 8CPUs a
considerable amount of time is needed to process an image
and to detect the objects. In our tests the average time for

Figure 6: Simplified convolutional deep neural network architecture used for object detection.

Figure 4: Performance comparison between the CPU configuration
and GPU configuration for 100 image samples

Figure 5: Necessary time for image processing using CPU and GPU
configuration for various number on object proposals

processing was approximately 10 seconds. The time
necessary to detect the object is depending also on the
number of the proposals. In Fig.5 can be seen that the time
value is the smallest when we have less proposals. But the
variation is not linear, because, as can be observed, for 230
proposals the necessary time is higher than for the maximum
number of proposals (in our case, 300).
 In Figure 4 is represented the performance difference
between GPU and CPU configurations. Using a GPU for
object detection will decrease considerably the computation
time. Even with a low performance configuration of the GPU,
we get a very high detection rate, comparing with the values
recorded for CPU mode. The average time to process an
image was reduce to an average of 0.7 seconds. Taking in
consideration this result, we cannot say that we achieve to
make real-time object detection. The performance is limited
by our hardware configuration, for train and validation was
used an onboard GPU with 2GB of shared memory. If we will
take in consideration the performance difference between our
GPU and the ones used in common DNN research papers (as
it was stated at the beginning of this chapter), we can observe
that our GPU performance is minimum 10 times smaller.

V. CONCLUSION

 The proposed open-source framework can be used to
validate various types of neural deep network architectures
using Caffe as development library. Even if this paper was
based on object detection algorithms that were applied on
images sampled from Torcs, also the framework can be used
to solve classification problems, only by changing the deep
neural network architecture. Even in this work no real-time
performance was achieved during the tests, due to the
hardware configuration limitations, a more powerful GPU
will enable the usage of this framework with success in real-
time environments. We believe that our work will be very
useful for the scientific community which is interested in
developing machine learning algorithms, because is providing
a complete, Windows based, framework for training and
validation. Most of the scientific researches were done under
Linux platforms, using only video streams or basic game
environments (i.e. Atari games [17]).
 Torcs represents a complex car racing environment that is
making possible a future industrialization of the algorithms
developed inside it, to be applicable in the real world.
 Our framework can be also improved to get a higher
computational speed, by using C++ language to rewrite the
layers and modules that in this moment are implemented in

Python language or can be adapted to use a new approach in
object detection, that is describe in [16].

ACKNOWLEDGMENT

This paper is

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser and J. Xiao, DeepDriving:
Learning Affordance for Direct Perception in Autonomous
Driving, in IEEE Conference on Computer Vision and Pattern
Recognition (CVRP), 2015.

[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference on
Computer Vision (ICCV), 2015.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation”, IEEE Conference on Computer Vision and Pattern
Recognition (CVRP), 2014.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”, in
IEEE Conference on Computer Vision and Pattern Recognition
(CVRP), 2015.

[5] J. Hosang, R. Benenson, and B. Schiele, “How good are de-
tection proposals, really?” in British Machine Vision Conference
(BMVC), 2014.

[6] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes
for effective detection proposals?”, in IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2015.

[7] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra,“Object-
Proposal Evaluation Protocol is ’Gameable’,”arXiv:1505.05836,
2015

[8] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeul-
ders, “Selective search for object recognition“, in International
Journal of Computer Vision (IJCV), 2013.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A.
Zisserman, in The pascal visual object classes 9voc0 challenge.
International Journal of computer vision, 88(2):303-338, 2010

[10] B. Thomee, D.A. Shamma, G. Friedland, B. Elizalde, K. Ni, D.
Poland, D. Borth, and L.J. Li. Yfcc100m: The new data in
multimedia research, in Communications of the ACM, 59(2):64-
73, 2016.

[11] J. Redmon, A. Farhadi. YOLO9000: Better, Faster, Stronger,
IEEE Conference on Computer Vision and Pattern Recognition
(CVRP), 2016.

[12] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor
Darrell. “Caffe: Convolutional Architecture for Fast Feature
Embedding”

[13] J. Long, E. Shelhamer, and T.Darrell, “Fully convolutional
networks for semantic segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, and L. Fei-Fei, ImageNet :
A large-scale hierarchical image database, in Conference on
Computer Vision and Pattern Recognition (CVPR), 2009

Figure 7: Samples of images with detected objects inside Torcs.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in
deep convolutional networks for visual recognition, in ECCV,
2014.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning”, in NIPS Deep Learning Workshop
2013

[17] http://torcs.sourceforge.net/

