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Abstract In this paper, an approach to control a 6-DoF stereo camera for
the purpose of actively tracking the face of a human observer in the context of
Human-Robot Interaction (HRI) is proposed. The main objective in the pre-
sented work is to cope with the critical time-delay introduced by the computer
vision algorithms used to acquire the feedback variable within the control sys-
tem. In the studied HRI architecture, the feedback variable is represented by
the 3D position of a human subject. We proposed a predictive control method
which is able to handle the high time-delay inserted by the vision elements
into the control system of the stereo camera. Also, along with the predictive
control approach, a novel 3D nose detection algorithm is suggested for the
computation of the feedback variable. The performance of the implemented
platform is given through experimental results.

Keywords Human robot interaction - Time-delay systems - Active vision -
Facial features detection and tracking

1 Introduction

In recent years, the number of service robotics application scenarios centered
in human environments has drastically increased [26]. Such applications span
from common all-day-living assistance platforms [3] to care-giving robots de-
ployed in hospitals and homes [19]. Although the navigation and mobile manip-
ulation capabilities of such robots increased exponentially in the last decade,
there is still a lack of proper Human-Robot Interaction (HRI) methods. The
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HRI term denotes the process through which a human person enters in con-
tact with a robot, usually performed with the purpose of sending certain com-
mands. With the advent of new imaging technologies, the HRI paradigm has
been approached from the perspective of recognizing different human features
from which robotic commands can be inferred [30]. Such features, which can
be used to determine the head pose of the human with respect to the robot, are
the eyes, nose and mouth. The work presented in this paper aims at control-
ling the orientation and zooming capabilities of the robotic vision hardware,
with the goal of expanding the HRI interaction area. This challenge has been
tackled through the active tracking of the human nose in a stream of stereo
images acquired from an active 6-DoF stereo camera. Within the camera con-
trol structure, the nose is considered to be one of the best features to track
since it can be visible from different imaging perspectives of the human head.
As opposed to the nose, the center of the detected face may not always be
optimally bounded by the face detection algorithms.

Humans use a variety of mechanisms through which they can send infor-
mation to other persons, information regarding their state of mind or related
to other human interactions. All these mechanisms used by a human to send
or receive information fall under the name of non-verbal communication or
body language [6]. Also, through the interaction, humans are turning their
attention towards characteristics such as the human voice, the features, or
the movements of a person [7]. This typical human behavior starts to develop
from childhood, when only simple human features are tracked, until adulthood,
when complex structures for human features understanding are gained [31].

Starting from the above described human behavior and using the advan-
tages of current computation power, different research groups are aiming at
developing robotic platforms with the capacity to mimic human behavior.
Robotic systems that realize human behavior imitation use information with
respect to the human observer in order to understand the geometrical rela-
tion between the observer and the robot. Such a system is the ROVIS Human
Interaction platform presented in Fig.

The objective of the proposed HRI architecture is to maximize the inter-
action area by maintaining the features of a person within the center of the
acquired image through the control of two Pan-Tilt-Zoom (PTZ) cameras.
The usage of two cameras is motivated by the fact that, along with the 2D
location of a person in the image plane, we also compute the real distance
from the camera to the person, thus allowing us to control the zoom com-
ponents of the cameras. By controlling the zoom, the quality of the acquired
image is improved, thus providing a proper input to the scene understanding
algorithms.

In comparison to structured light sensors, such as the MS Kinect®, a stereo
camera has the advantage that it can be used in outdoor environments, where,
in the case of active sensors, the infrared pattern projected for the obtaining
depth estimation, interferes with the natural light coming from the sun. Fur-
thermore, a stereo camera with a wide enough baseline between the sensors (as
the cameras usually mounted on robotic platforms) can deliver more precise
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Fig. 1 Human-Robot Interaction example within the ROVIS system (face detection and
3D mapping).

depth data for objects further away from the camera than a structured-light
device, which is dependent on the projected infrared grid. Also, laser range
sensing technology, although precise in estimating distances, requires addi-
tional imaging sensors for extracting the features to track. Nevertheless, the
time-delay approach presented in this paper can be directly applied for con-
trolling the pose of other imaging systems.

A core concept in HRI is the recognition of human gestures, such as the
pointing of a direction by a person, studied by Nickel in [27]. The approach
proposed in [27] uses a Hidden Markov Model (HMM) and a stereo camera
hardware setup to track the human head’s pose and the arms. Also, Park
proposed in [29] a Particle Filter (PF) based gesture recognition system for
the purpose of mobile robot navigation. The Engagement Concept, referring to
the way a person starts an interaction, maintains it and finally finishes it, has
been integrated into a robotic structure that can participate in interactions
with humans at the level of conversations and collaborations which involves

gestures [32].

The HRI structure described in this paper falls in the area of active vision
systems, set forth in the seminal work of Aloimonos [I]. In such a HRI system,
one of the most crucial elements is the real-time capability of the architecture
to control in real-time the 6 Degrees-of-Freedom (DoF) stereo camera. The ac-
tive control of robot vision imaging technologies has been tackled in a number
of research papers. Just to mention a few, in [36], a probabilistic framework for
adapting the gaze of a single camera for human face acquisition is proposed.
The control of two PTZ cameras is treated in [2I] from the perspective of 3D
depth computation and the calculation of the homographic transformations
between the sensors. An algorithm for rectifying stereo images acquired by
two PTZ sensors is presented in [38].

The robustness and stability of an active vision system is strongly de-
pendent on the time-delay introduced by the image processing system into
the control scheme [16]. Although there is a large number of stereo PTZ sys-
tems, such as the ones mentioned above, for which powerful computer vision
algorithms have been developed the impact of the time-delay introduced by
the image processing component into the overall control structure has been
scarcely studied. There is also important to note, that, in our work, we do not
try to contribute with a computation time enhancement of the image process-
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ing methods, but to cope with the time-delay introduced by them. Neverthe-
less, the overall system can only benefit by the speed boosting of the vision
algorithms through parallel computation devices (eg. GPUs, or FPGAs).

The main goal of the work presented in this paper is to create an apparatus
which is able to follow a human observer’s facial features (eg. nose tip) when
he/she is moving on an unspecified path. In the application, the time delay
corresponds to the process of face detection, image segmentation and 3D nose
tip position estimation. In the same time, the delay produced by the image
processing components is stochastically variable and depends on the effort
the vision algorithms need for accomplishing their tasks. For example, if the
tracked facial features are present in a large image area, the computational
effort for detecting them will be low, while for small areas, that is, when the
human subject is further away from the camera, the time needed for detection
will be higher. A discussion and experimental results with respect to this
variation will be given in the performance evaluation section. As calculated
in [23], the maximum processing delay which can be introduced in the system,
without destabilizing it, is approx. 0.48s.

In time-delayed, or dead-time systems, the controller’s choice and its tun-
ing involve the usage of specific methods, such as prediction control [9], the
classical Ziegler-Nichols approach [I1], or the generalized form of the Hermite-
Biehler theorem [33].

The problems of dead-time systems have been addressed in [2]. In order to
fulfill the stability requirements it is needed to determine the maximum delay,
also known as delay margin, that can be introduced in the system without
affecting its stability. The compensator can thus be designed using this delay
margin. Corke presented in [J] several algorithms, based on PID or Smith
predictor controllers, in which an object of interest can be tracked using an
active camera. Based on the classical Smith predictor, a neural structure for
the control of a telerobotic system with time-delays caused by communication
channels has been proposed in [20]. PID regulators for controlling dead-time
systems have also been proposed in [39] and [25]. A stability interval for a P
regulator used to control a dead-time system was obtained by Silva [34] using
an analytical approach.

In our previous work, we have used the generalized Hermite-Biehler the-
orem to develop a Proportional (P) controller for compensating the delay
present in the visual control system of a 6-DoF active stereo camera [23][24].
In the current work, we try to overcome the limitations of the P controller
through the development of a Proportional-Integrative-Derivative regulator
using prediction control. As in classical predictive control, the main charac-
teristic of the approach is the extraction of the dead-time component outside
the feedback loop. As it will be shown in the experimental results section, the
control precision, as well as the computation time, have been improved using
the presented approach.

In this paper we propose a control approach for a stereo active vision
system used in HRI, which inherently incorporates dead-time introduced by
the image processing elements. The rest of the paper is organized as follows.
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In Section [2] the face detection and nose tip 3D position estimation algorithms
are detailed. The descriptions of the mathematical model and of the control
approach for the 6-DoF active stereo camera are given in Sections |3 and
respectively. Finally, before conclusions and outlook, performance evaluation
results are presented in Section

2 Human Head Pose Estimation

The first step in estimating the pose of a head is to detect it at the 2D image
level. For this purpose, two boosting classifiers trained for recognizing human
faces [37] have been used. The 3D orientation of the head is given through the
detection of the nose tip, as it will be further explained.

2.1 Face Detection in the 2D Image Domain

The boosting approach is a general framework used to improve the accuracy
of a certain machine learning algorithm [I5]. This is performed by combining
a weighted voting scheme using N hypotheses which have been generated by
a repeated training built around different subsets of training data. A boosting
classifier is composed of a so-called weak and strong learner, or classifier:

— weak learner: has to perform only slightly better than random guessing,
that is, its overall classification error has to be smaller than 50%. The
hypothesis Ay eqr is obtained from a learning algorithm;

— strong learner: from a set of N weak learners, a strong learner, or clas-
sifier, is obtained as a linear combination of weak learners.

The two classifiers used for detecting human faces have been trained off-
line with frontal and profile faces, respectively. A number of face samples used
for training may be seen in Fig.[2l The training data is composed of 4000 pos-
itive and negative manually selected image regions containing human faces.
As described in [5], for each region, a set of Haar-like features have been
calculated [37]. The implied AdaBoost technique automatically selects those
features that best describe the human faces. In recent years, along the tra-
ditional Haar-like ones, new features for object recognition, and in particular
face detection, gained popularity. Among them are the Local Binary Patterns
(LPB) [28] and the Histogram of Oriented Gradients (HOG) [10], originally
developed for full body human recognition. In our experiments with LBP fea-
tures, we have noticed a slight improvement in the detection accuracy, as well
as a processing time enhancement. Since the main goal of the work presented
in this paper is the delay time introduced by the image processing compo-
nents, we have chosen to stick with the standardized Haar features, leaving a
comparison between the several feature extraction methods for future work.

The boosting face detection algorithm is applied on each image delivered by
the stereo vision system. In order to achieve a confident head detection, a series
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Fig. 2 Sample faces used to train the two AdaBoost classifiers for frontal and profile face
detection.

of face recognition parameters have been tuned, such as the scale factor, used
to determine the face scale difference between each search, the search area size,
used to bound the minimal head search region, or the head selection confidence,
used to select the best recognized face from an image where multiple faces are
present. These parameters have been obtained heuristically within the context
of the HRI scenario, that is, the face of the human subject will probably cover
a specific image area, given the interaction area with the robot.

Real-time head detection capabilities have been achieved through a dy-
namic face search window adjustment approach, as follows. At the initializa-
tion phase, the search ROI is considered to be the whole input image. During
execution, when a face fails to be detected, the previously detected face is used
as input for the search window adjustment algorithm, which, with every new
frame, increases the search area based on the location of the last detected face.
In Fig. a), the construction of the new search window, centered on previous
head’s ROI, is presented. The obtained 2D head region of interest is used as
input for the following nose detection stage.
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Fig. 3 Human features detection. (a) Search window computation for face detection. (b)
Human nose detection.

2.2 Nose Detection

The main advantage in detecting the tip of the nose is that it can deliver a more
confident pose of the head in frontal, as well as in profile images, since, for the
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case of profile images, it is more visible in comparison to other features, such
as the lips. As with the nose, many of these characteristics are related to their
poses, color or prominence. In this paper, the fact that the nose has a specific
color is used for its detection. Therefore, a color based segmentation approach,
followed by a nose contour identification process has been constructed.

The nose detection method has its roots in the original lips detection algo-
rithm proposed in [35]. The face ROI, determined previously through the face
detection method, is used for constructing a search region for nose tip recogni-
tion. This new region is determined according to the head’s width and height
in the 2D image domain. More accurately, it represents approx. 33% of the
central head region. The 33% value has been empirically chosen, taking into
account the a-priori knowledge that the nose is situated in the central head
region. In is important to note here that the nose segmentation approach pre-
sented in this section is strictly dependent on the face recognition method for
computing the nose search region. The nose region extraction can be further
improved through the calculation of additional facial features, using algorithms
such as boosting classifiers trained for eyes detection, or the correlation filters
proposed in the work of Bolme [4]. However, since the recognition of such extra
features is also based on the existing face detection algorithm, the additional
feature extraction methods would increase the processing time, adding little
improvement to the nose segmentation technique.

In order to cope with variable illumination conditions, the nose segmen-
tation has been applied on images represented in the L x a * b color space,
obtained by converting to Lab the acquired RGB images. The Lab color space
format is composed of a Luminance image channel L and two channels encod-
ing the color, a and b. The block diagram of the nose segmentation algorithm
can be seen in Fig.[dl A morphological gradient filter, applied on the b channel
image, is used to isolate perimeters of existing binary blobs. The new perime-
ters are treated as nose hypotheses [5]. For segmenting the nose, a logical
AND operation between the a color channel and the image resulted from the
morphological filter is applied.

=] £ .
a — / . \ g~
Input Image |- RGB to Lab EHlst?gram Output Image
Conversion [—pt Equalizationt_Inforphological
b «y?|  Gradient

)

Fig. 4 Block diagram of the proposed human nose segmentation algorithm.

On the nose segmented image, all the segmented pixels are grouped into
clusters based on their connectivity using a K-means clustering approach. Such
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a clustering example can be seen in Fig. [5(a)l The hypotheses clusters are
further classified into the object of interest, that is the nose, and background
based on their central and invariant moments. The final 2D nose tip coordinate
can be seen in Fig. [3(b).

Fig. 5 Nose hypotheses segmentation. (a) Pixels classification using K-means clustering.
(b) Nose contour detection and recognition.

2.3 3D Pose Estimation

The tip of the nose, calculated in the 3D real world space, is considered to
be the feedback variable of the active vision control system described in this
paper. The 3D pose of the nose is obtained from its recognition in the input
stereo image, that is, the left and right image pair. The 3D reconstruction
procedure pair takes as input the stereo rectified images, the 2D image nose
coordinates and the internal parameters of the stereo camera (e.g. focal length
and optical center). The computation of the 3D nose pose is given by the
following relations [I§]:

X :xlg, (1)
Y:ylg, (2)
z=72 3)

where, P = (X,Y,Z,1) are the 3D homogeneous coordinates of the nose,
projected on left and right image planes as p; and p,.:

P = (xlvylal)a (4)
Pr = (Tr, Yr, 1),
where b represents the distances between the two sensors of the stereo cameras,
f is the focal length and d = x;—=, is the disparity between the two projections
of the nose tip in the image planes. The computed 3D pose of the nose is used
as feedback variable for the camera control system.
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3 Modeling of a 6-DoF Active Vision System

The main goal of the proposed active vision platform is to expand the human-
robot interaction area by controlling the orientation of the camera system. The
basic block diagram of the proposed architecture can be seen in Fig. @(a). The
feedback variable is represented by the head detection system described in the
previous section. The position error for the control system is given by the 3D
pose of the tip of the nose and a 3D reference coordinate point W located at
the optical center of the left camera, as illustrated in Fig. @(b) The goal of the
control system is to automatically drive the two PTZ cameras which make up
the stereo vision platform, thus ending up with a 6-DoF system (e.g. 2x pan,
2x tilt and 2x zoom). The mathematical model of the camera’s servo-drive is
the same for the pan, tilt and zoom. In the following, the modeling and control
of the left sensor’s pan module will be described, the design of the other five
units being analogous.

3D Ref, 6-DoF Orientation N 6-DoF Facial Features
point ~ _ Controller Camera Extraction

3D nose tip position

(b)

Fig. 6 (a) Basic block diagram of the proposed stereo active vision system. (b) Error
definition in the 3D Cartesian space.

The detailed block diagram of the control system for a single module, that
is the pan one, is presented in Fig. [7]] This mathematical model of the plant
represents the servo-drive which adapts the pan orientation of the left sensors
of the stereo camera. In our experiments we have used two Sony Evi-D7 op®
PT7Z digital video cameras. The inner-loop within the block diagram from
Fig. [7] correspond to a standard servo-drive model for a Direct Current (DC)



10 Gigel Macesanu et al.

motor [I2]. All six drives of the stereo PTZ system have the same dynamic
model. The blocks composing the inner-loop are:

— the plant model P(s), that is the DC motor, modeled as a first order lag
element, with the transfer function:

P(s) = kp/(1 + Tps); ()

— the controller of the inner position loop R(s), described as a Proportional
(P) controller:
R(s) = ki; (6)

— the integrative element I(s) used to integrate the pan’s velocity in order
to extract its position:

I(s) = ki/s. (7)

k,, k. k, T, k; T
r e A A A A A
p _°p () u, ro_e u, v : PIT £ y
_>(+ -8» - P r— _ﬂ -8» — P |

T C(s) M(s) T R(s) P(s) 1(s) V(s)

Fig. 7 Detailed block diagram of the pan control system within the proposed active vision
architecture.

The signals propagating through the inner-loop are the command signal
u, which drives the DC motor, the output pan velocity v and the integrated
pan’s position p. The outer-loop elements from Fig. [7] are the following:

— the unknown system controller C(s), designed in the next section;
— the conversion module M (s) = k,;,, modeled as a P element, used by the
architecture to transform measured pixel metric into real-world degrees.
— the visual data processing block V(s) modeled as a time-delay transfer
function [9]:
V(s)=e"". (8)

where, the delay 7 represents the time needed to process a pair of images
in order to extract the 3D pose of the human nose.

The r, signal is the reference position given by the reference coordinate
3D point W. The difference between W and the feedback position variable y,
representing the pose of the human head, determines the error signal e,. e,
represents the error between the current orientation of the camera and the
position along the X image axis of the human head, or nose tip:

€p=Tp— Y (9)
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ep is further used as input for the overall system controller C(s). For the
considered pan case, the final objective of C(s) is to maintain the error along
the X Cartesian axis at the lowest possible level.

Having in mind the above explanations, the transfer function of the inner-
loop from Fig. [7] can be express as:

R(s)P(s)I(s) _ kykpk; (10)

where the values of the parameters have been determined using a standard
system identification toolbox.

Starting from Eq. the open-loop transfer function of the entire system
can be written as:

Goi(s) = C(s)M (8)Gu(s)V (s), (11)

Replacing the expression of M(s) and G;(s) in the above expression we
end up with:

kb, kpk;
sTy, + 1) + ko kpk;

G, = C(s) e, (12)
s(

Although the inner-loop model G;;(s) and the M (s) element are both lin-
ear, the time-delay introduced by the visual processing algorithms, which cal-
culate the feedback variable y, makes the overall feedback system to be a highly
nonlinear one. The process modeled by the G,;(s) transfer function is time-
delay dependent, since it is always influenced by the processing time required
by the vision component.

4 Control System Design

In this section, the design of the control system’s compensator C(s) is detailed,
taking into account the high time-delay introduced by the image processing
system. In order to control a time-delay system, such as the one considered
in this paper, a different control design technique is required as for the case
of traditional linear approaches. This is mainly needed because a time-delay
component introduces an infinity of poles in the overall transfer function of the
system. The reason why this phenomenon takes place is because an exponential
function, as the one used in modeling dead time components (see Eq. , is
expanded as the following time series:
2,2 i
e‘”%l—%+ 827!- +...+(_1)iST
The dead time introduced in the system leads, on the one hand, to its
destabilization and, on the other hand, to the decrease of the system’s stability

(13)
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reserve. Starting from the control system’s simplified block from Fig. [8] the
reduced form of the overall transfer function can be written as:

)G
1+ C(s)Gp(s)e="

where C(s) is the system’s compensator and Gp(s) is the transfer function of
the considered plant:

Gisis (5) (14)

Gy (s) = M(s)Guls). (15)

Rp(s) Ep(s)

(s) | o |
LR ) G ¢ >

Fig. 8 Block diagram of the control structure containing dead-time.

The dead time present in the system cannot be actually separated from the
process since there is no possibility to measure the signal Y7 (s) from Fig.[8] In
order to stabilize the plant, a prediction control structure can be implemented,
such as the Smith predictor approach, illustrated in Fig. [0] The core concept
of the Smith predictor is to move the process’s dead time outside the feedback
loop of the control system and to determine a controller of a time-delay free
system. It is important to notice that such an approach aims at obtaining a
transfer function G%,,(s) which has the time-delay component outside of the

feedback loop (see Fig. [10)):
v o Cr(s)Gp(s)
Gl = 1096,

where C(s) is the compensator which controls the plant when the time delay
element is outside the feedback loop.

ee (16)

Rp(j‘_) Ep(S) C*(s U.(s) > GP(S) Y](S)> <7 Y(s)
> G,/ s

Yi(s)

Fig. 9 Basic block diagram of a prediction based control structure.
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R'f)% O w0 e RO O}

Fig. 10 The movement of the dead-time outside the control structure’s feedback loop.

In order to design a controller C,.(s) capable of stabilizing a system having
its dead time outside the control loop, an equality between Eq. [14] and Eq.
has to be established. Thus, a Smith predictor based compensator is obtained,
having the following control structure:

Cr(s)

T GEeEE e

(17)

Before computing C,.(s), the synthesis of the C}(s) controller has to be
done, as it will be further explained.

4.1 C}(s) Controller Design

Knowing the mathematical model of the open-loop system, the design of the
compensator is made according to the poles placement rule [I7], having the
following Lemma in mind:

Lema 1 Considering a control system with a unitary reaction, described by

the process’s transfer function Gp(s) and by the process’s controller G.(s),
defined as:

. bn,15n_1 + bn,QSn_2 +...4+ by
Ap(s) AnS™ + p_18"" 1+ ...+ ag
(8)  GnyS™ + dn,—18™ + .+ qo
(8)  Pn,s™ +pn,—18" "+ +po
P P

(18)

It is assumed that the polynomials B,(s) and A,(s) are prime (coprime),
that is, they do not have common roots. The arbitrary polynomial P.(s) of
order n. = 2n — 1 is considered. There exist the polynomials Q. (s) and P.(s)
of order n, = ng = n — 1 which satisfy the following relation:

Ap(s)Pr(s) + By(s)Qr(s) = Pe(s). (19)
where P.(s) represents the characteristic polynomials and is defined as:
P.(s)=pG s™ +p5 18"+ 4§ (20)

In our work we have concentrated on developing a PID regulator, with its
parameters determined according to the following lemma:
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Lema 2 Given a compensator:

n232 +n1s+no

Gre = 21
g(s) d282 + dlS ( )
its PID form can be obtained as:
ki k
PID i d
=k — 22
GhL R P (22)
where,
n1d1 — nodz
bp=—7H— (23)
1
ki = %f, (24)
d? —nidid d3
I (25)
1
d
Ty = df. (26)

The plant G),(s), that is the stereo active vision system, is described by
the following transfer function [23):

_ By(s) 2.83
Grls) = A(s) 2+ 1.19s + 2.07° (27)

The computation of a PID controller is conditioned by the choice of the
C*(s) compensator, according to Eq. [21| from Lemma

r

* Qr(s) q25% + q15 + qo
= = . 2
Crls) P.(s) p2s? + p1s (28)

The choice of the characteristic polynomial P.(s) is made such that its
order is equal to the order of the left hand side expression from Eq. P.(s)
is obtained as a product of two second order polynomials. While, the first
polynomial is intended to fulfill the imposed performances, the second one aims
at constraining the values of the poles to be between three to five times higher
than the natural frequency of the first polynomial [39]. Thus, the characteristic
polynomial will be written as:

Pe(s) = (5% + 2Cwns + w2 ) (s + pe)?, (29)

where ( is the damping factor and w,, the natural frequency. The computation
of the coefficients of the first polynomial is performed as follows [8]:
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— ( is derived from the overshooting value:

In(M,) _ |In(M,)]

— = = 2.166; 30
¢ Vr2 +1In?2M, /72 +In2M, (30)
— the natural frequency is chosen according to the 2% criterion:
4
Wy = @ = 4.607 rad/sec, (31)

where, t4 is the settling time.
By choosing the value of the p. pole to be 3 — 5 of the natural frequency
and replacing it in Eq. [29] we obtain the next polynomial:
P.(s) = (5% 4+ 19.965 + 21.23)(s + 23)2. (32)
By replacing Eq. and 32)in Eq. [19] the following relation is obtained:

(p15+p2s?)(s®+1.195+2.07)+2.83(qes> +q15+q0) = (5°+19.965+21.23)(5+23)?.
(33)
The inequalities from Eq. are obtained from the next matrix equation:

0 1 0 0 0 P1 Cpca

1 119 0 0 0 P2 Cpc3
1.192.07 0 0 283 |qo| = |cpe2| - (34)
207 0 0 283 0 Q1 Cpel

0 0 28 0 O Q2 Cpco

Since the coefficients matrix is nonsingular, it can be resolved for py, ps,
qo, 1 and g2. Hence, the following PID compensator is obtained:

7.59352 4 62.425 + 61.39

Cr(s) = g
0.01541s2 + s

The components of Eq. can be extracted according to Eq. -
resulting in the following values: k, = 61.473, k; = 61.39, kq = 6.645, T =
0.0154. The C?(s) regulator is further inserted into Eq. With the purpose of
obtaining the process’s controller C,.(s). The system’s response, for the block
diagram form fig. [9] is shown in Fig. [TI}] As can be seen, the value of the
overshooting is 23.8%, while the settling time has a value of 0.81 sec.

(35)

4.2 Overall Compensator Design

Having in mind the results presented above, the overall system’s controller
Cy(s) can be determined according to Eq. where C(s) is replaced by a
PID compensator, defined as in Eq. [35]and G,(s) is replaced with Eq.

(as® +bs+c)(s? + fs+g)

Cls) = (s+ds?) (s> + fs+g) +h(as? +bs+c)(1 —e57)

(36)
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Fig. 11 The response of the proposed time-delay control system in the time domain.

The condensed block diagram for the feedback system is presented in
Fig. After grouping the terms in Eq. [36| the expression of C.(s) becomes:

as* + (af +b)s® + (ag +bf +c)s® + (bg + cf)s +cg

Crls) = ds* + (df +1)s3 4+ (dg+ f)s®> + gs + h(as®> + bs + ¢)(1 —e57)
(37)
E * U,
g R
G ()1

Fig. 12 Practical controller implementation.

In order to implement the compensator as a discrete controller, the contin-
uous transfer function determined above has been transformed to the discrete
time domain using the Backward (Rectangular) Rule:

_1—2_1
)

s (38)

where T, is the sampling time. According to [I4], the sampling frequency for
a digital control system must be 4 to 20 times higher than the frequency of
the closed-loop system. In our active vision application, where the system’s
frequency is 2.5 Hz, the value of the sampling frequency is between 10 Hz and
50 Hz. Hence, the required value of the sampling time T, should be between
0.1sec and 0.02sec.
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By discretizing Eq. [37] according to and taking into account that 7 =
vT,, v € R, the transfer function of the numeric compensator is obtained:

Co(zl) = gzt +n32 3 +noz 2 4+ npzt + g Uz
" B dez 8 +dsz 5+ daz 4 4+dsz 3 +doz 2 +diz71+1 - Ep(Zfl)v
(39)

where v = 7/T, = 4. The operational transfer function of the numeric com-
pensator is:

(L4 dig " +dog? +d3q ® +dag™* + dsq™® + deq ®)ucft] =

(40)
(no +n1q " +n2q? +n3q” > + ”4q_4)5p[t]-

The final form of the numeric regulator is finally derived from Eq. [0}

ucft] = — dyucft — 1] — dauc[t — 2] — dsucft — 3] — dyucft — 4]—
— dsuc[t — 5] — deuc[t — 6] + noep[t] + niey[t — 1]+ (41)
+ naeplt — 2] + nzeplt — 3] + naept — 4],

where e, [t] = rp[t] — y[t] (see Fig. Eq. [41is used for controlling each DoF of
the stereo active vision system. The numeric algorithm can be implemented
either on dedicated hardware, or on typical PC computers. As it will be shown
in the next section, the proposed approach performs optimally in the context
of the considered active gaze following scenario.

5 Performance Evaluation
5.1 Experimental Setup

The stereo acquisition system was placed at 1.7 m above the ground, as shown
in the experimental setup image from Fig. The sensors become active
when a human observer appears inside the camera’s Field of View (FOV).
The face detection procedure, followed by nose detection, starts the active
tracking process. The experiments were performed in an indoor room, using
natural and artificial illumination. The subject moved inside the room in a
random way, in frontal and profile poses, covering an area of about 9m?. For
additional details please refer to the videos accompanying this paper.

5.2 Face Detection and Tracking Results

The evaluation of the proposed facial features detection was performed using
images with different poses and distances. The subject modified its position
and orientation in an interval ranging from 0.3m to 2.2m along the pan-tilt
directions and from 0.2m to 2.8 m along the camera’s zoom distance.
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6-DoF Stereo
Camera

Fig. 13 Experimental setup composed of a 6-DoF stereo camera and a human subject
moving freely.

The facial feature detection algorithms, that is face and nose, were then
applied while, in parallel, both these features were earmarked through vi-
sual inspection. The manual visual inspection corresponds to the ground truth
used for establishing the accuracy of the method. The Euclidean distance F4
on the 2D image plane, considered as nose detection accuracy, was then com-
puted between the automatic estimated values from the proposed algorithm
and the manually determined ground truth. The variation of E; for a num-
ber of samples can be seen in Fig. The features detection algorithm was
consequently considered to produce a "Hit” when the error was lower than
an adapting threshold ¢ [px] and a "Miss” otherwise (meaning that the error
was big enough to imply that the corresponding detector failed to segment the
correct features), as shown in Tab. [1} ¢, is defined as:

a-(W-H—wl-hl)+ﬁ-wh~hh
ty, = 42
" wy, - hy —wy - Iy ’ (42)

where w; and wy, represent the lowest and highest width of the face region, h;
and hj are the lowest and the highest values of the face’s height and W and
H are the image’s width and height. « = 18 and 8 = 2 represent normalizing
factors.

tp, is modified according to the distance between the camera and the human
subject, that is, with respect to the size of the face in the image. If a face covers
a wider area of the processed image, then the value of ¢; is will be higher. In
other words, the structure of the t; threshold in Eq. [42| relates the size of the
face to the size of the image. That is, the larger a face region is, the better the
face detector should perform.

The Hit/Miss results for nose recognition are considered for frontal, as well
as for left and right profiles of the face. The "NA” (Not Available) value in
Tab. |1|signifies that no face candidate (neither frontal or profile) was detected.
The values presented in Tab. [1| show the accuracy of the face detector over
the input HMI sequence from Fig. accuracy which affects the precision of
nose segmentation. A thorough description and evaluation of the face recogni-
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tion system used in our work can be found in the seminal work of Viola and

Jones [37].

12 T T T T T T
10

2D Euclidean distance [px]

60 80 100 120
Image no

Fig. 14 2D Euclidean distance describing the accuracy of the nose detection algorithm.

Table 1 Number of face detection results in the video sequence from Fig. presented as
Hit/Miss/NA values.

Profile left | Face | Profile right
Hit 32 22 41
Miss 7 4 4
NA 10

The detection hit probability P(hit) can be statistically determined from
the obtained Hit/Miss/NA results (see Tab. [2). The mean error was further
used to establish the standard deviations o for each corresponding sensor
model.

Table 2 Statistical data of facial feature detection algorithm.

Detector ~ P(hit) o
Head 0.821 4.95
Nose 0.741 1.919

The introduced delay, against which the active tracking system has to
cope, varies stochastically and depends on the effort the detection methods
need for processing a pair of stereo images. The variable time-delay for the
described vision algorithms is illustrated in Fig. As can be seen, the dead-
time introduced at frame 65 is signifficantly higher. This happens due to a fast
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Fig. 15 The variable time-delay introduced by the vision algorithms during the active
tracking procedure.

movement of the human subject located at a large distance from the camera.
Since the reduced ROI for face searching could not be calculated, as described
in Section [2] the time required for computing the facial features is higher. As
pointed out in [23], a maximum delay of 0.48s can be supported by the control
system, without destabilizing it.

5.3 Stereo Active Vision System’s Response

The stereo camera was controlled for pan, tilt and zoom values ranging in the
intervals [—60°, 60°], [-40°,40°] and [0mm, 10mm], respectively. For the zoom
case, the controlled variable is actually the focal length of the camera which
varies from Omm to 10mm. The control commands were applied individually
for the left and the right cameras, while the rotational velocity of the camera
was modified using three different values: 30°/sec, 50°/sec and 70°/ sec, for
images acquired at a resolution of 640 x 480 pixels. Analogously, the zoom
control was tested for the focal length’s translational velocities of 2mm/sec,
5mm/sec and 7mm/sec. Nose samples acquired during active tracking can be
seen in Fig. [16]

Active tracking results are presented in Fig. where the pan-tilt real
values and the position actuator variable are illustrated for different speeds.
The left camera movement is presented in Fig.[17(a), [[7(c) and [17(e), while the
right camera movement is depicted in Fig. [17((b),[17(d) and [L7(f), repsectively.
Also, in Fig. performance evaluation results regarding the zoom adaptation
are illustrated. As can be seen from the diagrams, at a distance above 2.5m
the zoom’s focal length achieves its maximum value of 10 mm.

For each experimental session, the mean error is calculated as err[deg] =
POSest—POSreal. The obtained error values are summarized in Tab. [Bland Tab. 4]
in comparison to results delivered by our previous published method [24]. As
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(b)

Fig. 16 Samples acquired during active nose tracking for the case of the pan-tilt (a) and
zoom (focal length) (b) variations. The center of the green cross in the middle of the image
represents the reference value for the control system, while the nose tip is the feedback
variable (best viewed in color).

can be seen, based on the proposed control approach, the stereo camera was
able to track nose features with good accuracy for speeds less than 70°/ sec.
For higher values, the camera fails to follow the features since, because of the
angular speeds of the pan and tilt, an image blur effect appears in the acquired
images. The different obtained mean errors, such as the case of the pan left
at 70° being notable higher than the other values, is due to the nonlinearities
of the PTZ drives, as well as the random movements of the human subject in
the experimental area.

Table 3 Statistical position errors for pan and tilt movements, in comparison to
method [24].

Item Speed [°/sec]  Mean Error [deg] = Mean Error [deg]
Current approach Method [24]
30 0.358 2.5365
Pan Left 50 0.797 4.6072
70 0.33 7.4130
30 0.465 1.1618
Tilt Left 50 0.313 3.3475
70 0.482 4.1415
30 0.15 14.4943
Pan Right 50 0.227 13.97
70 0.222 15.2349
30 0.358 2.6462
Tilt Right 50 0.315 2.082

70 0.441 3.2988
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Fig. 17 Active nose tip tracking for different pan and tilt speeds. (a,b) 30°/sec. (c,d)
50°/ sec. (e,f) 70°/ sec.
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Fig. 18 Nose tip active tracking results using the zoom (focal length) controller. (a) Human
subject - camera distance. (b) Adaptation of the focal length with respect to the human
subject - camera distance from (a).

Table 4 Statistical position errors when controlling the focal length.

Item Speed [mm/sec] Mean Error [mm)]
0.582
0.434
0.263
0.895
0.748
0.576

Zoom Left

Zoom Right

~N N Ut

6 Conclusion and future work

The work presented in the paper deals with the realization of a stereo ac-
tive vision framework for HRI which can cope with the high time-delay values
introduced by the image processing algorithms. As can be seen from the ex-
perimental results section, the proposed approach has been proven stable in
tracking the nose feature of the human subject in different active tracking
scenarios, provided that the maximal rotational velocities of the sensors are
limited. The proposed method for designing the overall system controller has
better results, compared with the previous work of the authors, based on the
development of a proportional controller. Our new results overcame the limi-
tations of the P controller, more exactly the new system doesn’t have steady
state error and the camera’s oscillations are eliminated.

The methods for 3D facial feature estimation presented in this paper are
being integrated into a probabilistic model for gaze tracking [22], a part of
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an ongoing work on the extension of a hierarchical Bayesian framework for
multisensory active perception presented in [I3]. The framework can be used
to drive the active vision system proposed in this paper, providing a powerful
solution for applications in the field of Human-Robot Interaction.
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