
Controlling Depth Estimation for Robust

Robotic Perception

Sorin M. Grigorescu and Florin Moldoveanu

Department of Automation, Transilvania University of Braşov,
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Abstract: In this paper, a closed-loop control approach to the robust depth estimation problem
in stereo vision is presented. The idea employed in this work is to introduce feedback control
techniques at image processing level in order to improve the robustness of a robotic vision
system with respect to external influences, such as cluttered scenes and variable illumination
conditions. The control strategy detailed in this paper is based on the traditional open-loop
mathematical model of the depth estimation process. Block matching has been considered as
the technique to be used in the proposed depth calculation system. The suggested control law
is derived from the known extremum seeking method which aims at finding optimal actuator
values based on the minimum, or maximum, values of a feedback variable. The benefits of using
feedback control techniques in machine vision, and particularly in stereo depth estimation, are
demonstrated through performance evaluation results.
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1. INTRODUCTION

In many vision based applications, such as mobile robotics
and visual guided object grasping, the reliability and ro-
bustness of 3D visual perception of the robot’s surround-
ing plays a crucial role in the success or failure of the
autonomous system [Kragic and Christensen (2005)].

The most common approach to 3D perception, or depth
sensation, is through stereo vision. Mainly, stereo vision
exploits the geometry between several perspective cam-
eras imaging a scene. By analysing the perspective views
between the acquired images, 3D visual information can
be extracted. Traditionally, stereo vision is implemented
using a pair of calibrated cameras with a known baseline
between their optical points. Having in mind that the
geometrical relations between the two cameras are known,
by calculating the relative perspective projection of object
points in both images, their 3D world coordinates can be
reconstructed until a certain accuracy.

In this paper, the authors propose a feedback control
approach of a depth estimation system, aiming at com-
pensating the problem of using constant image process-
ing parameters in complex environments. When feedback
control techniques are discussed in connection to robot
vision, they are usually put in the context of controlling
a certain system using visual information. Such devices
are typically named Active Vision or Visual Servoing
Systems [Chaumette and Hutchinson (2006)]. There are
relatively few publications dealing with control techniques
applied directly on the image processing chain.

The idea of feedback image processing has been tackled
previously in the computer vision community in papers
such as [Mirmehdi et al. (1999)] or [Zhou et al. (2006)]. One
of the first comprehensive papers on the usage of feedback

information at image processing level can be found in
[Peng and Bahnu (1998)], where reinforcement learning
was used as a way to map input images to corresponding
optimal segmentation parameters. Mirmehdi et al. (1999)
developed a hypothesis generation and verification method
in order to calculate interest operators which can be used
to locate target objects, such as bridges, in noisy data.
Also, Zhou et al. (2006) employed a feedback strategy in
the self-adaptation of a learning-based object recognition
system that has to perform in variable illumination condi-
tions. Marchant and Onyango (2003) used dynamic closed-
loop systems to automatically adapt camera parameters at
the image acquisition stage. In the area of stereo vision,
Gutierrez and Marroquin (2004) adopted probabilistic
methods for the robust analysis of depth estimation.

Although the mentioned literature is focused on closed-
loop processing, it does not provide a suitable control
framework from both the image, as well as from the control
point of view. Techniques for image processing inspired
from control engineering were used by Ristic (2007) for
adapting a character recognition system, as well as for a
quality control one. In the field of robot vision, the authors
successfully used feedback control concepts to tune region
[Grigorescu et al. (2008)] and boundary [Grigorescu et al.
(2010)] based segmentation operations in order to improve
the visual perceptual capabilities of a service robot. In this
paper, feedback machine vision is further investigated by
proposing a closed-loop model of depth sensing based on
the extremum seeking control paradigm set forth by Ariyur
and Krstic (2003).

The paper is organized as follows. In Section 2, the pro-
posed theory behind feedback modelling of image process-
ing systems is presented, followed in Section 3 by a detailed
description of the process to be controlled, that is, the
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depth estimation system. In Section 4, the machine vision
extremum seeking control paradigm detailed in Section 2
is applied to the depth sensing process. A performance
evaluation of the proposed approach is given in Section 5.
Finally, conclusions are stated in Section 6.

2. FEEDBACK CONTROL IN IMAGE PROCESSING

In a robotic application, the purpose of the image process-
ing system is to understand the surrounding environment
of the robot through visual information. Usually, an object
recognition and 3D reconstruction chain for robot vision
consists of low and high levels of processing operations.
Low level image processing deals with pixel wise operations
aiming to improve the input images and also separate
objects of interest from background. Both the inputs and
outputs of the low level processing blocks are images. The
second type of modules, which deal with high level visual
information, are connected to low level operations through
a feature extraction component which converts the input
images to abstract data describing the imaged objects. The
importance of the quality of results coming from low level
stages is related to the requirements of high level image
processing. Namely, in order to obtain a proper 3D virtual
reconstruction of the imaged environment at a high level
stage, the inputs coming from low level have to be reliable.

Traditionally, vision systems are open-loop sequential op-
erations, which function with constant predefined param-
eters and have no interconnections between them. This
approach has impact on the final 3D reconstruction re-
sult, since each operation in the chain is applied sequen-
tially, with no information between the different levels of
processing. In other words, low level image processing is
performed regardless of the requirements of high level pro-
cessing. In such a system, for example, if the segmentation
module fails to provide a good output, all the subsequent
steps will fail.

The basic diagram from which feedback mechanisms for
machine vision are derived can be seen in Fig. 1. In such a
control system, the control signal u, or actuator variable, is
a parameter of an image processing operation, whereas the
controlled, or state, variable y is a measure of processing
quality.
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Fig. 1. Feedback control of an image processing operation.

The design and implementation of feedback structures in
machine vision is significantly different from conventional
industrial control applications, especially in the selection
of the pair actuator variable - controlled / state variable.
The choice of this pair has to be appropriate from the
control, as well as from the image processing point of view.

In order to derive a control strategy for a machine vision
system, the following discrete nonlinear state-space repre-
sentation model of the vision apparatus is suggested:

{

ẋ (k) = f [x (k),u(k)],

y(k) = g[x (k)],
(1)

where x ∈ ℜn is the state, u ∈ ℜ is the actuator (input),
y ∈ ℜ is the output, f : ℜn × ℜ → ℜn is the state
transition function and g : ℜn → ℜ is the output function.
k represents the discrete time. Suppose that we have a
control law:

u(k) = α[x (k), θ], (2)

the control problem is to find the optimal parameter θ∗

which provides an output of desired, or reference, quality.
Following the above reasoning, the closed-loop system:

ẋ = f [x , α(x , θ)] (3)

has its equilibrium point parameterized by θ. Having in
mind the high non-linearity of an image processing system,
a control strategy based on extremum seeking [Ariyur and
Krstic (2003)] is suggested. Thus, the goal of the feedback
control system is to determine the optimal parameter θ∗

as the minimum, or maximum, value of the state vector x :

θ∗ = arg min x (k) or θ∗ = arg max x (k). (4)

The choice of this particular type of control method lies
in the fact that, taking into account the non-linearity of
an image processing system, it is difficult to determine
reference values that could be applied to classical feed-
back structures. Hence, in the image processing control
approach, the desired state of a vision system is given by
the extremal values of the state vector. In the following,
the proposed model is applied to the depth estimation
processed detailed in the next section.

3. BLOCK MATCHING AND DEPTH SENSATION

The geometry of stereo vision is known as epipolar geome-
try [Hartley and Zisserman (2004)]. The principle behind
it relies on the fact that between an imaged point in real
3D world coordinates and its projection onto 2D images
exists a number of geometrical relations. These relations
are valid if the cameras are approximated using the pinhole
camera model. The model refers to an ideal camera with
its aperture described as a point and no lenses are used to
focus light. Knowing the relative position of two cameras
with respect to each other, the imaged 3D point can be
reconstructed in a 3D virtual environment using triangu-
lation. In the following, in order to differentiate between
2D and 3D point coordinates, we will refer to the first ones
as pixels, whereas to the last ones as voxels.

When estimating distances through stereo vision, there are
mainly five steps that have to be performed:

(1) Calibrate the stereo camera by calculating its intrinsic
(e.g. focal length, optical centre, etc.) and extrinsic
(e.g. baseline between the cameras, relative positions
and orientations to each other) parameters;

(2) Mathematically remove radial and tangential distor-
tions introduced by errors in the geometry of the
cameras lenses;

(3) Rectify the angles and distances between the acquired
images so that the rows in the left and right images
are parallel;
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(4) Calculate the correspondence features from the left
and right images in order to obtain a depth, or
disparity, map of the scene;

(5) Knowing the epipolar geometry of the cameras, re-
project the calculated disparity to a virtual 3D envi-
ronment.

Since steps 1, 2 and 3 from the above list are out of
the scope of this paper, we will take them as granted,
that is, we consider the input images to be undistorted,
rectified and acquired from calibrated cameras. For more
information on these steps the reader may refer to Hartley
and Zisserman (2004).

3.1 Stereo Camera Setup

The mechanics of depth estimation are illustrated in
Fig. 2. A real world point represented in homogeneous

coordinates P = [V W Z 1]
T

is projected in the image
planes of a stereo camera as the homogeneous 2D image
points:

{

pL =
[

vL wL 1
]T

,

pR =
[

vR wR 1
]T

,
(5)

where pL and pR have the 2D coordinates (vL, wL) and
(vR, wR) projected onto the left IL and right IR images,
respectively. The pL and pR 2D image positions are given
by the intersection with the image plane of the line
connecting point P in world coordinates with the optical
centres OL and OR of both cameras, as shown in Fig. 2.
The image, or principal plane, is located at a distance f
from the optical centre of a camera. f is commonly known
as the focal length. The z axis of the coordinate system
attached to the optical centre is referred to as the principal
ray, or optical axis. The principal ray intersects the image
plane at image centre (cv, cw), also known as the principal
point. The origin of the image coordinate system is defined
as the image top-left corner (v0, w0).
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Fig. 2. Principle of depth estimation of a point P on a pair
of rectified and undistorted stereo images.

Knowing pL, pR and the distance T between the optical
centres of the two cameras, the goal of depth estimation is
to calculate the distance Z between the baseline T and
the 3D position of P . Having in mind the perspective

projection of P onto the image planes, given by pL and
pR, the distance Z can be obtained as:

Z = f ·
T

d
, (6)

where d is the disparity of the projected point P :

d = vL − vR. (7)

From (6) it can be observed that the distance is inversely
proportional to the disparity. Since we have considered
rectified images as inputs, that is, images with parallel
rows, the disparity d is given only by the difference between
the point coordinates on the v image axis.

3.2 Block Matching Correspondence

In order to properly compute Z, it is needed to establish
the location of point P in each camera image, namely, the
2D image points pL and pR. The correspondence problem
is currently one of the most investigated issues in stereo
vision. In literature, there are a number of correspondence
calculation methods, a comprehensive classification being
made by Brown et al. (2003). In this paper, we have chosen
to control the so-called Block Matching (BM) algorithm in
order to obtain reliable 3D scene information.

BM is one of the most popular correspondence matching
algorithm used in robotics, its main advantage being fast
computation rates, thus making it a good candidate for
real-time autonomous systems. BM matches points by
calculating a Sum of Absolute Differences (SAD) over
small sliding windows. The BM method is commonly
performed in three steps. In our implementation we have
considered the following operations:

• Pre-filter the input images with a 7x7 sliding window,
containing a moving average filter, to reduce lighting
differences and enhance texture;

• Compute SAD over a sliding window;
• Eliminate bad correspondence matches through post-
filtering.

As shown in Fig. 2, the SAD values are calculated using a
window shifted in the right images along the interval:

H = [dmin, dmax], (8)

where H is referred to as the horopter, defined as the 3D
volume covered by the search range of BM. The goal of
computing SAD is to find the best matching candidate of
point pL in the right image, that is pR, as:

m =
∑

v,w

[IL(v, w)− IR(v + d, w)], (9)

where m is the SAD, or match, value and d ∈ H. By
calculating SAD over H, we obtain a characteristic in
which its maximum represents the best match candidate
of pL in the right image.

Post-filtering aims at preventing false matches, hence false
disparity maps. For filtering bad matches, a uniqueness
ratio function is used, defined as:

qr =
(m−mmin)

mmin

, (10)
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where mmin is the minimum SAD, or match, value. A
feature is considered a match if:

qr > Tq, (11)

where Tq is a predefined uniqueness threshold value. Brad-
ski and Kaehler (2008) suggested the value of the unique-
ness threshold to be Tq = 12. As it will be shown in
Section 4, a predefined constant value of Tq poses prob-
lems in 3D reconstruction since, depending on the imaged
scene, it can introduce a large number of outliers in the
reconstructed 3D model, or a too few number of voxels.
To overcome this problem, we propose in Section 4 a
feedback control method for the uniqueness threshold Tq.
The output of BM is a grey level image Id, also referred
to as the disparity map, where the levels of grey represent
different distances. In Fig. 3, the disparity map calculated
for a typical cluttered service robotics scene is presented.
The pixel values with a lower brightness from Fig. 3(b) are
considered to be closer to the stereo camera system.

(a) (b)

Fig. 3. Depth estimation via block matching. (a) Input left
image. (b) Disparity map obtained with qr = 16.

3.3 Back-Reprojection into 3D Virtual Environments

As can be seen from Fig. 3, the so far calculated disparity
map provides information in pixel metrics, that is, levels
of greys in an image, and not real 3D coordinates. The
disparity points can be mapped back to a virtual 3D scene
using the so-called reprojection matrix. The reprojection
matrix is derived from the intrinsic stereo camera param-
eters and is defined as:

Re =







1 0 0 −cv
0 1 0 −cw
0 0 0 f
0 0 −1/T cT /T






, (12)

where, in case the left and right cameras have different
optical centers, cT = cLv − cRv . c

L
v and cRv are the left and

right centres of the cameras images along the v axis. In
this paper, we have considered cLv = cRv , hence Re4,4 = 0.

Having in mind (12), a real world 3D point P can be
reconstructed in a virtual 3D environment through the
following homogeneous transformation:







V
W
Z
B






= Re ·







vL
wL

d
1






, (13)

where B is a scaling factor defining the size of the repro-
jected voxels. In this work, we have considered a 1-to-1
mapping, that is, a scaling factor B = 1. Using (13), the
reconstructed virtual environment of the scene shown in
Fig. 3 is illustrated in Fig. 4.

Fig. 4. Reconstructed 3D model of the scene from Fig. 3.

4. CLOSED-LOOP CONTROL OF DEPTH
ESTIMATION

The main problem with the open-loop depth estimation
system described in the previous section is its low perfor-
mance with respect to variation in the scene structure,
such as variable illumination conditions or clutter. An
example of using constant parameters of depth estimation
is illustrated throughout Fig. 3, 4 and 5. As said before, one
of the main factors that influences the depth estimation
process is the threshold value Tq of the uniqueness ration
qr. If qr has an optimal predetermined value, as in Fig. 3,
the reconstruction from Fig. 4 is fairly reliable, having in
mind that we operate only with a pair of images. On the
other hand, if the scene parameters change, or qr has a
suboptimal value, 3D reconstruction might fail, as shown
in Fig. 5. For a large value of qr, as in Fig. 5(a,c), the 3D
results have a low number of object voxels, whereas for a
high qr the number of obtained outliers is too large, as in
Fig. 5(b,d).

(a) (b)

(c) (d)

Fig. 5. 3D reconstruction results from suboptimal values of
qr. (a) qr = 68. (b) qr = 4. (c,d) Reprojected scenes.

Although, as inferred from Section 3, there are a number of
parameters that could be controlled, we have considered
the depth estimation process, for simplicity, as a Single
Input Single Output (SISO) model.

The depth sensing process has been modelled as the
nonlinear system from (1). For the sake of clarity, the
state vector x is considered to have only one element
which describes the behaviour of the modelled process.
Since, depending on the chosen uniqueness threshold Tq,
we obtain a different disparity map Id, as shown in Fig. 5,
a straightforward way to derive a state variable for the
system is to quantify Id. In this paper, we suggest as
quantification of Id the distance segmentation Ith of the
obtained 3D model.
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Depth segmentation can be implemented by specifying a
range interval of interest H, also entitled horopter, where
the desired objects reside. Using the inverse of (12), the
horopter can be translated from real world metric units
to pixel values that map depth in the disparity image Id.
In Fig. 6, three segmentation examples using a horopter
H = [0.7m, 1.5m] and different uniqueness thresholds are
illustrated. As can be seen, only the segmentation result
from Fig. 6(a) corresponds to optimal segmentation, the
other two being either over- or under-segmented.

(a) (b) (c)

Fig. 6. Depth segmentation using H = [0.7m, 1.5m] and
different uniqueness thresholds. (a) Optimal qr = 16.
(b) Over-segmented qr = 68. (c) Under-segmented
qr = 4.

Using the above described depth segmentation principle
based on region segmentation, the problem of controlling
the quality of the disparity map Id is converted into the
problem of controlling the quality of the segmented image
Ith. A region segmented image is said to be of good quality
if it contains all pixels of the objects of interest forming
a “full” (unbroken) and well shaped segmented object
region. Bearing in mind the qualitative definition of a
segmented image of good quality, the quantitative measure
of segmented quality in (14) has been used:

im = −log2p8, im(0) = 0, (14)

where p8 is the relative frequency, that is, the estimate of
the probability of a segmented pixel to be surrounded with
8 segmented pixels in its 8-pixel neighbourhood:

p8 =
no. of seg. px. surrounded with 8 seg. px.

total no. of seg. px. in the image
. (15)

Keeping in mind that a well segmented image contains
a “full” (without holes) segmented object region, it is
evident from (15) that a small probability p8 corresponds
to a large disorder in a binary segmented image. In this
case, a large uncertainty im is assigned to the segmented
image. Therefore, the goal is to achieve a binary image
having an uncertainty measure im as small as possible in
order to get a reliable depth segmentation result.

The depth estimation system was modelled according
to (1), where the involved variables are:

x = [im qr]
T
, (16)

y = Id(v, w), (17)

u = qr(im, Tq). (18)

In Fig. 7, the input-output (I/O) relation between the
state variable im and the actuator parameter Tq is dis-
played for the case of the scene from Fig. 3. The goal of the
proposed extremum seeking control system is to determine
the optimal value T ∗

q which corresponds to the minimum

of the curve in Fig. 7. T ∗

q represents the desired value
of the uniqueness threshold. The shape of the obtained
I/O curves, as can also be seen from Fig. 7, preserve
the controllability of the system, since the value of the
actuator converges to the global minimum representing the
equilibrium set-point of the considered system.
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Fig. 7. The uncertainty measure im of segmented pixels
vs. uniqueness threshold Tq.

Following the above presented discussion, the block dia-
gram of the proposed depth sensing system is illustrated in
Fig. 8. Firstly, left and right images are processed in order
to establish an initial depth map. The core of the method
is represented by the state feedback loop which is used to
automatically adapt the actuator parameter Tq in order to
obtain consistent depth estimation. Once the equilibrium
set-point has been achieved, the calculated Id is used
to reconstruct the viewed scene in a 3D environment by
reprojecting the voxels using (13).

5. PERFORMANCE EVALUATION

The evaluation of the proposed system has been performed
on a set of images acquired from service and autonomous
robotics systems. A first set of 30 pairs of images of
cluttered scenes, such as the one in Fig. 3, were acquired.
The images contain common household objects which
can be visually grasped and handled by a redundant
manipulator. The scene in front of the robot manipulator
was imaged using a pre-calibrated Bumblebee� stereo
camera. The second series of test images consists of a set
of 30 pairs of images acquired from a stereo high speed
driver assistance system. In Fig. 9, an example of such a
scene is illustrated.

Compared with open-loop depth estimation, which uses
constant parameters of Tq, the obtain results show an
increase in depth estimation accuracy and consistency. As
a consequence of the regulation process, the number of
outliers in the scene has been drastically reduces, in the
same time keeping a sufficient amount of voxels to be used
for scene understanding and labeling. The 3D volumes
were evaluated based on the amount of obtained object
voxels and outliers rate. As future evaluation work, the
development of an evaluation procedure for the considered
process in taken into account.

6. CONCLUSIONS

In this paper, a feedback control approach for machine
vision systems based on the extremum seeking control
paradigm has been proposed. The suggested approach has
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Fig. 8. Block diagram of the proposed feedback control system for robust depth estimation.

(a)

(b)

Fig. 9. (a) Outdoor scene from stereo images acquired
using a high-speed driver assistance system (Courtesy
of Signum GmbH�). (b) Reconstructed scene using
the proposed algorithm.

been successfully applied to a state-of-the-art depth sens-
ing system used in autonomous robots. For performance
evaluation, indoor cluttered service robotics scenes and
outdoor images acquired from a driver assistance compo-
nent were considered. As future work, the authors plan
to enhance the theory behind feedback control in image
processing, as well as to increase the number of controlled
parameters of the depth sensing system, in order to im-
prove the stability and robustness of the component. Also,
the developed framework is planned to be evaluated no
only on two-view stereo reconstruction, but on multi-view
scene analysis with the goal of optimally reconstructing
3D volumes of indoor and outdoor scenes.
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