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Abstract

In this thesis the vision architecture ROVIS (RObust machine VIsion for Service robotics)

is suggested. The purpose of the architecture is to improve the robustness and accuracy

of visual perceptual capabilities of service robotic systems. In comparison to traditional

industrial robot vision where the working environment is predefined, service robots have

to cope with variable illumination conditions and cluttered scenes. The key concept for

robustness in this thesis is the inclusion of feedback structures within the image processing

operations and between the components of ROVIS. Using this approach a consistent

processing of visual data is achieved.

Specific for the suggested vision system are the novel methods used in two important

areas of ROVIS: definition of an image ROI, on which further image processing algorithms

are to be applied, and robust object recognition for reliable 3D object reconstruction. The

ROI definition process, build around the well known “bottom-up top-down” framework,

uses either pixel level information to construct a ROI bounding the object to be manipu-

lated, or contextual knowledge from the working scene for bounding certain areas in the

imaged environment. The object recognition and 3D reconstruction chain is developed

for two cases: region and boundary based segmented objects. Since vision in ROVIS

relies on image segmentation on each processing stage, that is image ROI definition and

object recognition, robust segmentation methods had to be developed. As said before,

the robustness of the proposed algorithms, and consequently of ROVIS, is represented by

the inclusion of feedback mechanisms at image processing levels. The validation of the

ROVIS system is performed through its integration in the overall control architecture of

the service robot FRIEND. The performance of the proposed closed-loop vision methods

is evaluated against their open-loop counterparts.
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Kurzfassung

In der vorliegenden Dissertation wird das Bildverarbeitungsrahmenwerk ROVIS (RO-

bust machine VIsion for Service robotics) vorgestellt. Dieses Rahmenwerk dient zur

Verbesserung von Robustheit und Genauigkeit der visuell wahrnehmenden Fähigkeiten

von Servicerobotiksystemen. Im Vergleich zu traditionellen Industrierobotern, bei de-

nen die Arbeitsumgebung vordefiniert ist, müssen Serviceroboter variierende Beleuch-

tungsbedingungen und komplexe Umgebungen meistern. Das Schlüsselkonzept für die

Robustheit in dieser Dissertation ist der Einsatz von Rückkopplungsstrukturen in den

Bildverarbeitungsalgorithmen und zwischen den einzelnen ROVIS-Komponenten. Unter

Verwendung dieses Ansatzes wird eine konsistente Verarbeitung der visuellen Daten erre-

icht.

Charakteristisch für das vorgeschlagene Bildverarbeitungssystem sind die neuartigen

Methoden, die in zwei wichtigen Bereichen von ROVIS genutzt werden: die Definition

von ROIs (Region Of Interest) im Bild, auf die dann weitere Bildverarbeitungsalgorith-

men angewandt werden können, und die robuste Objekterkennung für zuverlässige 3D-

Rekonstruktion. Das Verfahren zur Definition der ROI, das um das allgemein bekannte

“bottom-up top-down” Rahmenwerk errichtet wurde, verwendet entweder Pixelinforma-

tionen zur Konstruktion einer ROI, die das interessierende Objekt enthält, oder kon-

textabhängige Erkenntnisse aus der Szene für die Begrenzung bestimmter Bereiche der

visualisierten Umgebung. Die Objekterkennung und 3D-Rekonstruktion wurde für zwei

Fälle entwickelt: bereichs- und kantenbasierte Erkennung von Objekten. Weil die Bild-

verarbeitung in ROVIS in jeder Verarbeitungsphase, d.h. bei der ROI-Definition und der

Objekterkennung, auf Bildsegmentierung beruht, mussten robuste Segmentierungsalgo-

rithmen entwickelt werden. Wie bereits erwähnt, wird die Robustheit der vorgestellten

Verfahren und damit die Robustheit von ROVIS durch den Einsatz von Rückkopplungs-

strukturen auf der Ebene der Bildverarbeitung erreicht. Eine Bestätigung der Güte von

ROVIS ist durch die Integration im Steuerungsrahmenwerk des Serviceroboters FRIEND

gegeben. Die Effizienz der vorgestellten visuellen Rückkopplungsmethoden wird durch

einen Vergleich mit den zugehörigen Verfahren, die offene Regelkreise verwenden, bew-

ertet.
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1. Introduction

In humans, biological vision represents the transformation of visual sensation into visual

perception [98]. The analogous computerized operation, also known as computer vision,

deals with interpretation of digital images for the purpose of visual understanding of a

scene by a machine, that is a computer. In comparison to computer vision, machine vision

deals with the combination of different computer vision techniques and dedicated hardware

for solving different tasks in fields like industrial manufacture, safety systems, control

of Automated Guided Vehicles (AGVs), monitoring of agricultural production, medical

image processing, artificial visual sensing for the blind or vision for robotic systems, also

referred to as robot vision. The increased research in robot vision in the past years has

spawned a large amount of systems and applications. From available literature, robot

vision systems can be grouped according to the type of application they were designed

for:

• vision for manipulation which represents the class of robot vision applications de-

signed to detect objects that can be grasped by a dexterous manipulator;

• vision in mobile robotics characterized by the vision systems used for autonomous

robot navigation and path following;

• vision for mobile manipulation representing a hybrid vision system designed for both

robot navigation and dexterous manipulation.

Depending on the robot vision application, the visualized scene can be found either

in an industrial environment, where position and orientation of objects is predefined and

the illumination controlled, or, as the case of service robots, the imaged scene consists

of typical human surroundings where objects are occluded and visualized in variable

illumination conditions.

In this thesis, the problem of designing, improving and implementing service robotic

vision systems is approached. Service robots represent a class of robots designed to operate

semi- or fully autonomously to perform tasks useful to the well-being of humans and

equipment, excluding manufacturing operations [114]. The applications of service robots

range from simple domestic systems (e.g. vacuum [110] or automatic pool cleanears [112])

to entertainment [111] and social robots [115]. A special case of service robots which

received large attention in last years are assistive systems designed to help disabled and

elderly people. Such a robotic platform is FRIEND (Functional Robot with dexterous arm

and user-frIENdly interface for Disabled people), a semi-autonomous service robot in its

3rd generation designed to support disabled people with impairments of their upper limbs

in Activities of Daily Living (ADL) and professional life. The system consists of a seven
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1. Introduction

Degrees-of-Freedom (7-DoF) manipulator mounted on an electrical wheelchair. FRIEND

is equipped with various sensors that provide intelligent perception of the environment

needed for task execution support. One of these sensors is a stereo camera system which

provides visual information regarding the system’s environment. In particular, this thesis

concerns the improvement of visual perceptual capabilities of the robotic system FRIEND

for visual guided object grasping, a field of robotics in which a computer controls a

manipulator’s motion under visual guidance, much like people do in everyday life when

reaching for objects. A key requirement in this field is the reliable recognition of objects

in the robot’s camera image, extraction of object features from the images and, based

on the extracted features, subsequent correct object localization in a complex 3D (three

dimensional) environment.

The main problem with service robotic systems such as FRIEND is that they have to

operate in dynamic surroundings where the state of the environment is unpredictable and

changes stochastically. Hence, two main problems have been encountered when developing

image processing systems for service robotics: unstructured environment and variable

illumination conditions. Such a scene can be easily noticed in everyday life: when a

human is searching for an object he/she looks for it through a multitude of different other

objects. Although this process is relatively simple for humans, its implementation on a

machine has a high degree of complexity since a large amount of visual information is

involved. A second major problem in robot vision is the wide spectrum of illumination

conditions that appear during the on-line operation of the machine vision system. In a

large number of vision applications one important attribute used in object recognition is

the color property of objects. In case of the human visual system color is a result of the

processing done by the brain and the retina which are able to determine the color of an

object irrespective to the illuminant. The ability of the human visual system to compute

color descriptors that stay constant even in variable illumination conditions is referred to

as color constancy [26]. Although the color constancy ability is taken for granted in the

human visual system this is not the case of machine vision.

Reliable object recognition and 3D reconstruction in robot vision is approached in this

thesis through image segmentation, which represents the partitioning of a digital image

into subregions suitable for further analysis. In literature, a number of object recognition

methods that calculate an object’s Position and Orientation (POSE) without the use of

image segmentation have been proposed. One important category of such methods are

based on the Scale Invariant Feature Transform (SIFT) [57]. Since then, a large number

of SIFT based methods has spawned applications in various fields of computer vision,

ranging from robotics [91] to medical image processing [27]. SIFT is a transformation for

image features generation which are invariant to image translation, scaling, rotation and

partially invariant to illumination changes and affine projection. The method can be used

to generate a set of key features of an object which can further be used to relocate the

object in an image. The key features, also called keypoints, are defined as maxima/minima

of Difference of Gaussians (DoG) that occur at multiple scales from an image convolved

with Gaussian filters at different scales [57]. Although the method is relatively robust with

3



1. Introduction

respect to occlusions and illumination conditions its major drawbacks are that firstly it

needs an a priori model of the object to be recognized and secondly that the object has to

be textured in order to calculate as many key features as possible. Also, the precision of

the method is low if the object does not have a planar surface. These drawbacks motivate

again the usage of image segmentation in robot vision where the precision of 3D object

POSE estimation is crucial.

In Figure 1.1 the dependencies of object recognition and 3D reconstruction with re-

spect to image segmentation are shown. The arrows in the figure represent the possible

flow of information that may exist in a robot vision system where segmentation plays a

central part. Image features, which provide object position in the 2D (two dimensional)

image plane, extracted from binary segmented images, are used for recognizing object

types and also to reconstruct their 3D shape in a virtual Cartesian space. Also, as it

will be explained in Chapter 6.1.2, information regarding recognized objects can be used

to improve segmentation quality, which directly influences precision of POSE estimation,

that is the precision of detected 2D object feature points used for 3D reconstruction.

Feature points are defined as key object points, obtained from segmented images, from

which the object’s 3D shape can be build. The type of object determined via 2D recog-

nition influences the 3D reconstruction method in the sense that different feature points

are extracted for different objects (e.g. for a bottle, its top neck and bottom are used

as feature points, as for a book, feature points are represented by the four corners of the

book).

Segmentation
(where is it – 2D)

Recognition
(what is it)

Pose estimation
(where is it – 3D)

Figure 1.1.: Object recognition and 3D reconstruction in robot vision.

In this thesis, the novel robot vision system ROVIS (RObust machine VIsion for Ser-

vice robotics) is suggested as a contribution to reliable and robust object recognition and

3D reconstruction for the purpose of manipulation motion planning and object grasping

in unstructured environments with variable illumination conditions. In ROVIS, robust-

ness must be understood as the capability of the system to adapt to varying operational

conditions and is realized through the inclusion of feedback mechanisms at image pro-

cessing level and also between different hardware and software components of the vision

framework. A core part of the proposed system is the closed-loop calculation of an image

Region of Interest (ROI) on which vision methods are to be applied. By using a ROI,

the performance of object recognition and reconstruction can be improved since the scene

complexity is reduced.
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1. Introduction

1.1. Related work and contribution of the thesis

According to the classification of robot vision applications made in introduction, a number

of representative state-of-the art image processing architectures, related to the ROVIS

system proposed in this thesis, are summarized below.

Vision for manipulation

Localization of objects for manipulative purposes has been treated in a relative large num-

ber of publications. A framework for object manipulation in domestic environments, based

on visual robot control and a cognitive vision architecture, is proposed in [46, 47, 48]. The

experimental platform for the framework is a Nomadic Technologies XR4000, equipped

with a Puma 560 arm for object manipulation and a stereo camera set for scene recogni-

tion. The approach used in detecting objects of interest for grasping and manipulation is

divided into localization of known and unknown objects in cluttered environments, using

the SIFT method. The complex problem of unstructured environments is also discussed

in [20] with respect to visual guided object grasping. In comparison to the mentioned

work, in this thesis the problem of object recognition is treated from the point of view of

improving the classical open-loop image processing chain and not from applying complex

vision algorithms for object detection.

Investigations regarding the architectural aspects of robot vision for manipulative

tasks can be found in [24], where a control framework for “hand-eye” manipulation, which

manages complexity of tasks through the composition of a few simple primitives, is pro-

posed. In [97], an extensive work regarding visual perception and control of robotic ma-

nipulation is given. Here, data processed by the vision system, based on 3D model shapes,

is enhanced with shape recovery information acquired from robust light stripe scanning.

In ROVIS, instead of using 3D primitive shape models for object reconstruction, 2D shape

descriptions of objects are used for recognition and 2D feature points calculation.

In recent years, the application of vision based object manipulation has been exten-

sively applied in the field of assistive and rehabilitation robots, as the case of the vision

system proposed in this thesis. AVISO (Assistance by VIsion for Seizure of Objects), de-

tailed in [52, 25], is composed of a MANUS arm and a stereo “eye-in-hand” camera system

mounted on the end-effector of the arm. The AVISO vision system relies on the end-user

(patient) to cope with the separation of the object to be grasped from the background

and also from the other objects. This process is achieved through the user by manually

moving the MANUS manipulator at a distance of approximatively ten centimeters to the

object. The arm movement is controlled using a human-machine interface which displays

in real-time images captured from the stereoscopic “eye-in-hand” camera. Once the ob-

ject is centered on the displayed image, the user has to manually draw an image ROI

bounding the object to be grasped. Finally, the object is automatically separated from

the background by calculating interest points with the Harris and Stephens [33] feature

detector. Using the epipolar geometry constraints, a 3D point representing the object

5



1. Introduction

grasping point is calculated. Further, the manipulator arm approaches and grasps the ob-

ject in a visual control manner. Although the AVISO method is reliable in unstructured

environments, it implies a relatively large amount of user interaction, which can be tiring

for the patient. An alternative method for AVISO, which uses less user interaction, is

proposed in [25], where the user must only select a point from the object to be grasped on

an image captured from the “eye-in-hand” camera. Using a second fixed camera present

in the scene and epipolar geometry the system can approach and grasp the object. This

method, although requiring less user interaction, it relies on the second camera present

in the scene. In this thesis, user interaction is used for defining an interest point only

once, hence limiting tiring interaction tasks. The defined interest point acts as a starting

point for automatic adjustment of the image ROI, on which the object is automatically

localized.

Similar to AVISO [52, 25], the AMOS (Assistive MObile robot System) vision sys-

tem [96] also uses a stereoscopic “eye-in-hand” camera mounted on a manipulator arm

and a Shared Responsibility software architecture which involves the user in the working

scenarios of the robot. If the object to be grasped is out of the range of the manipulator,

the position of AMOS is changed in order to get it closer to the object. In both systems

presented above, AVISO and AMOS, “eye-in-hand” cameras are used. In comparison to

that, in ROVIS visual information is obtained from a global, fixed, stereo camera system.

The advantage of using a global camera over an “eye-in-hand” one is that it provides a

global description of the imaged scene, which is more appropriate for manipulator motion

planing with obstacles avoidance.

In [56] the visual control of the MANUS arm using the SIFT [59] algorithm is proposed.

As said before, the disadvantage of this approach is the need of a 3D model of the object

to be grasped (the SIFT-keypoints) and the fact that the SIFT algorithm provides reliable

results only for planar textured objects. Recently, SIFT was used in a shared-controlled

architecture to simulate ADL tasks, also considered in this thesis, using a visual controlled

assistive robot arm [44].

Vision in mobile robotics

In mobile robotics, vision is commonly used for autonomous navigation control, indoor

or outdoor, of a mobile robotic platform. Although the vision system proposed in this

thesis has as target object recognition for manipulation, concepts from vision for mobile

robotics are presented here as applied to general robot vision.

A survey of color learning algorithms and illumination invariance in mobile robotics

is given in [94]. The algorithms are presented from the perspective of autonomous mobile

robot navigation with stress on inter-dependencies between components and high-level

action planning. As an alternative to the color segmentation methods presented in the

survey, in this thesis, robustness of color segmentation against varying illumination is

achieved through feedback adaptation of the image processing parameters.

6



1. Introduction

The vision system proposed in [13] is one of the first ones to approach the robot vision

problem from an image processing architectural point of view. The SRIPPs (Structured

Reactive Image Processing Plans) image processing system is designed for the robot con-

trol architecture FAXBOT of the RHINO mobile robotic platform. The sequence of vision

algorithms is built around an image processing pipeline. As a comparison, the architec-

ture of ROVIS is modeled using the Unified Modeling Language (UML) [65]. Through

the use of UML a better transparency of the system is achieved, as also a simplified de-

velopment process since the structure of the computer programs that make up ROVIS is

implemented graphically.

An interesting “visual attention” computer vision architecture developed for mobile

robots is VOCUS (Visual Object detection with a CompUtational attention System) [28,

29]. The designed system is based on the cognitive capabilities and neuro-physiology of

the human brain. For the recognition of objects two approaches are used:

• “bottom-up” attention, when no a priori information regarding the visualized scene

exists;

• “top-down” approach, when a priori information about the objects to be recognized

in the scene exists.

The “bottom-up top-down” framework is also used in this thesis for building two methods

for image ROI definition. Attention vision architectures have also been studied in [75]

with the purpose of optimizing the sensorimotor behavior of a mobile robot.

Vision for mobile manipulation

The systems designed for both navigation and object manipulation are mobile robotic

platforms equipped with redundant manipulators. Such hybrid systems, like the mobile

robot JL-2 [107] used for field operations, rely on vision to calculate the robot’s moving

path and also recognize objects to be manipulated.

In recent years, robotic perception in domestic environments has been treated in a

large number of publications [12, 47]. The UJI librarian robot [22] was designed to detect

IDs of books on a shelf. The vision system of this robot considers only the detection of

books IDs, followed by their pick up from the shelf using a special designed gripper and

hybrid vision/force control. In comparison to the vision system in [22], ROVIS aims at the

recognition and 3D reconstruction of all types of books, placed in cluttered environments.

Care-O-Botr represents a series of mobile robots designed to assist people in daily life

activities [32, 89]. They were developed at Fraunhofer IPA 1 since 1998, currently reaching

its 3rd generation. The object recognition system of Care-O-Bot uses a camera sensor and

a 3D laser scanner for reconstructing the 3D representation of objects of interest. The

objects are taught beforehand to the robot using model images. Also, a laser scanner is

used for planning a collision free trajectory of the 7-DoF manipulator arm used in grasping

1Fraunhofer-Institut für Produktionstechnik und Automatisierung
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1. Introduction

and manipulating objects. In ROVIS, the goal is to develop a robust vision system based

only on image data from a global stereo camera with the purpose of extracting as much

visual information as possible.

In [87, 88], it has been investigated how a mobile robot can acquire an environment

object model of a kitchen and more generally of human living environments. For this

purpose, range sensing information acquired from a laser scanner, in form of 3D point

clouds, has been used. However, such methods are strictly dependent on the range data

quality provided by the sensing device. Sensed depth information can have different error

values depending on the sensed surface.

A different approach in researching mobile manipulation is found in the BIRON

robot (Bielefeld Robot Companion), where the focus is on manipulative actions for human-

robot interaction [55]. The topic of human-robot interaction, also treated in [14, 15, 52,

96], plays a very important role in robotics, generally concerning safety and particularly re-

garding recognition and interpretation of human gestures. In this thesis, human-machine

interaction is treated as a tool used for sending input commands to the robotic system.

The contributions of this thesis, with respect to the state-of-the art systems presented

above, are both theoretical and practical, as summarized below.

The thesis considers the design and implementation of a robot vision system with

improved visual perceptual capabilities for the purpose of manipulator path planning and

object grasping [73, 72]. The focus of the proposed vision system ROVIS is specifically

related to service robotic platforms, namely it treats the various form of interconnections

between system components and also the connection to the overall control architecture of

the robot. These conceptual elements represent a crucial factor in the well operation of a

robotic system [46, 77].

The thesis represents a contribution in the field of feedback control in image pro-

cessing [83, 70, 66, 49]. Because of the complex environment where ROVIS operates, its

robustness with respect to external influences is critical. The role of including feedback

structures at image processing level is to improve this robustness. The region based color

segmentation algorithm proposed in this thesis represents further research in the field of

region segmentation, as a sequel to the proved closed-loop gray level region segmenta-

tion from [83]. The case of optimal boundary segmentation has been approached with

investigating a new feedback quality measure derived from feature extraction level. The

objective of both segmentation methods is to reliably extract 2D object feature points

needed for 3D reconstruction. As said before, the investigation of feedback mechanisms

for ROVIS are intended for the improvement of the overall robustness of the vision system

following the principle of decentralized control [40], where the robustness of a complex sys-

tem is not achieved by a complex control mechanism, but by controlling subcomponents

of it, thus ensuring overall system robustness.

One other important aspect in designing ROVIS is its performance evaluation with

respect to traditional vision architectures, where image processing is performed in an

8



1. Introduction

open-loop manner [108]. The algorithms presented in this thesis have been evaluated with

respect to traditional ones by appropriate performance metrics used to quantify results

from both proposed and compared methods. An overall evaluation of the ROVIS system

was made through measuring the performance of its end result, that is 3D reconstruction

of objects to be manipulated. These results have been compared with the actual positions

and orientations of the objects measured in real world.

The practical aspect of the thesis is represented by the integration of the ROVIS

system in the overall control architecture of the service robot FRIEND. ROVIS, sustained

by the implemented vision methods, was used in building the visual perceptual capabilities

of FRIEND.

1.2. Organization of the thesis

In Chapter 2, an overview of image processing hardware and operations used as building

blocks for vision algorithms in ROVIS is given. Chapters 4, 5 and 6 treat the use of these

operations in developing robust methods for improving the visual perceptual capabilities

of the architecture.

The concept and architectural design of the service robotic vision system ROVIS is

given in Chapter 3. The stress here is on core concepts of the system, that is visual data

processing on an image ROI and improvement of the vision methods through feedback

mechanisms implemented at different levels of image processing as also between various

components of ROVIS. The integration of ROVIS within the overall control architecture

of the robotic system FRIEND is also presented in this chapter.

Chapter 4 treats the development of two robust image segmentation methods required

in developing the image ROI definition systems from Chapter 5 and the object recognition

and 3D reconstruction chain from Chapter 6. Two types of novel segmentation operations

have been discussed, that is robust region and boundary based segmentation.

The complexity reduction of a scene, through the use of an image ROI, is presented in

Chapter 5. Based on the amount of available contextual information, two novel methods

for image ROI definition have been proposed, namely one bottom-up approach, based on

user interaction, and a second one, top-down, based on camera gaze orientation.

In Chapter 6 a robust object recognition and 3D reconstruction image processing

chain is proposed. Again, two types of object recognition methods can be distinguished

here, for the case of region based segmented objects and boundary segmented objects,

respectively. As before, the robustness of the chain has been improved, where it was

possible, with appropriate feedback mechanisms. Also, for performance evaluation, the

precision of ROVIS is compared to traditional open-loop image processing approaches.

Finally, conclusions and possible further development regarding the proposed vision

system are given in Chapter 7. Results from this thesis have been published in [1, 2, 3,

4, 5, 6, 7, 8, 9].
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2. Object recognition and 3D reconstruction in

robotics

A robot vision system is composed of different hardware and software components which,

together linked, provides visual information to the robot with respect to the surrounding

environment.

In this chapter, the basics of image processing used in robotics are given. In fact,

only the methods used in designing the ROVIS vision algorithms are presented. Since in

robotics the goal of the image processing system is to reconstruct the viewed scene in a

3D virtual environment that can be understood by the robot, the methods discussed in

this chapter are explained in the context of stereo vision which deals with the process

of visual perception for estimation of depth using a pair of cameras. The algorithms

presented here are to be taken as basic image processing operations used in developing

the robust methods, presented in Chapters 4, 5 and 6, within the ROVIS architecture.

Also, an introduction to feedback structures in image processing [83], a key concept

in the development of ROVIS, is given. Feedback in image processing is presented in the

context of robot vision, that is, the improvement of the visual perceptual capabilities of a

robot through the inclusion of closed-loop mechanisms at image processing level. A case

study of closed-loop gray-level image segmentation is presented.

2.1. Open-loop vs. closed-loop image processing

In a robotic application, industrial or real world, the purpose of the image processing

system is to understand the surrounding environment of the robot through visual infor-

mation. In Figure 2.1 an object recognition and 3D reconstruction chain for robot vision

is presented, consisting of low and high levels of image processing operations.

Low level image processing deals with pixel wise operations with the purpose of im-

age improvement and separation of the objects of interest from the background. Both

the inputs and outputs of low level image processing blocks are images. The second type

of blocks, which deal with high visual information, are connected to low level operations

through the feature extraction module which converts the input image to abstract data

describing the objects of interest present in the image. For the rest of high level opera-

tions both the inputs and outputs are abstract data. The importance of the quality of

results coming from low level stages is related to the requirements of high level image

processing [36]. Namely, in order to obtain a proper 3D virtual reconstruction of the
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Figure 2.1.: Block diagram of conventional (solid line) and closed-loop (dashed line) object recog-
nition and 3D reconstruction chain in robot vision.

environment at high level stage, the inputs coming from low level have to be reliable.

In Figure 2.1, the solid arrows connecting the processing modules represent a tradi-

tional, open-loop, chain in which image processing parameters have constant values. This

approach has impact on the final 3D reconstruction result since each operation in the

chain is applied sequentially, with no information between the different levels of process-

ing. In other words, low level image processing is done regardless of the requirements of

high level image processing. For example, if the segmentation module fails to provide a

good output, all the subsequent steps will fail. Also, the usage of feedforward informa-

tion for optimizing the open-loop image processing chain would fail to provide an optimal

outcome since no feedback with respect to the goodness of visual processing is considered

in such a structure.

In [83] the inclusion of feedback structures between image processing levels for improv-

ing the overall robustness of the chain is suggested. It is a fact that feedback has natural

robustness against system uncertainty and ability to provide disturbance rejection, which

is a fundamental concept in control theory [71]. The feedback between different image

processing stages is represented in Figure 2.1 by dashed arrows connecting high level op-

erations to lower ones. In this approach the parameters of low level image processing are

adapted in a closed-loop manner in order to provide reliable input data to higher levels of

processing. In [83] two types of feedback loops for image processing purposes have been

introduced:

• image acquisition closed-loop, in which feedback is used for controlling the image

acquisition process, thus ensuring an input image of good quality to the image

processing chain; in this case the parameters of the acquisition system are controlled

based on feedback information from different stages of image processing;

• parameter adjustment closed-loop, which deals with adaptation of image processing

parameters according to the requirements of subsequent processing operations.

In this thesis, the principle of closed-loop image acquisition is used in controlling the

orientation of the robot’s camera system through a visual controller, as described in

Chapter 5.3. Also, in order to improve robustness, parameter adjustment closed-loops are
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2. Object recognition and 3D reconstruction in robotics

implemented in key places of the ROVIS architecture, as will be explained in Chapters 3

to 6. The left and right images from Figure 2.1 are processed in parallel independent

of each other. The possible connections between the image processing chain for the left

image with the one processing the right image are not treated here. Such loops are strongly

related to the geometry of the stereo camera. Hence the feedback unifying both chains

should start directly from the 3D reconstruction module responsible with calculating the

3D positions of the imaged objects.

The design and implementation of feedback structures in image processing is signifi-

cantly different from conventional industrial control applications, especially in the selec-

tion of the pair actuator variable – controlled variable. The choice of this pair has to be

appropriate from the control, as well as from the image processing point of view. In [83]

two types of feedback structures to be used in image processing are introduced, both

presented in Figure 2.2.
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Figure 2.2.: Basic block diagrams of feedback structures used in image processing. (a) Ground
truth reference image available. (b) No reference image – control based on extremum
seeking.

When a reference value for the closed-loop system is available, in our case a reference

image, or ground truth, the classical error-based control structure from Figure 2.2(a) is

suggested. The ground truth is defined as what should be ideally obtained from processing

an image, regardless of the processing operation. The basic principle of the error-based

control structure is to automatically drive the values of the image processing parameters

according to the output image quality measure, or controlled variable. Using this measure,

an error between the reference value and the current output can be calculated. The
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2. Object recognition and 3D reconstruction in robotics

resulted error is used in determining the optimal working point of the image processing

tuning parameter, or actuator variable. The actuator variable can be calculated using a

classical control law, like P (Proportional) or PI (Proportional – Integral).

The second type of feedback structure proposed for image processing applications,

seen in Figure 2.2(b), treats the case when no reference value for the closed-loop system

exists. Here, the optimal value of the controlled variable is defined as an extreme value,

maximal or minimal, of a measure of image quality. The optimal value uopt of the actuator

u is chosen using the calculated extreme. The calculation of the optimal output value

y = f(uopt), within the effective input operating ranges [ulow, uhigh], is achieved using an

appropriate extremum seeking algorithm, as the hill-climbing method for image processing

purposes described in [83], with the pseudo-code presented in Table 2.1. An introduction

to extremum seeking control is given in Appendix A.

Table 2.1.: Hill-climbing procedure used in feedback structures for image processing.

1 Update the lowest input value ulow as the current state uc of the search process and
calculate yc = f(uc).

2 Identify n successors of the current state uc, uc + ∆u, . . . , uc + n · ∆u, and calculate
f(uc + i ·∆u), i = 1, . . . , n.

3 Let ym = f(um) be the maximum (minimum) of f(uc + i ·∆u), i = 1, . . . , n.
4 If ym > yc(ym < yc) update input value um as the current state uc and go to Step 2,

otherwise STOP the increasing of the input variable.
5 Current state uc of the search process is the parameter that provides image processing

result of optimal quality.

The advantages of the feedback structures mentioned above are emphasized in this

thesis by improving the visual perceptual capabilities of a service robotic system through

the vision architecture ROVIS.

2.2. Stereo image acquisition

The basic component in any machine vision system is the image acquisition module. Here,

images are acquired from vision sensors and converted in a suitable digital representation

for processing. Usually, in robot vision applications, as also in the ROVIS, stereo camera

systems are used to understand the robot’s surroundings. The advantages of stereo cam-

eras over normal monocameras are discussed below. Image acquisition can be divided for

explanation into two categories: hardware components and image representation, both of

them presented in this section.

2.2.1. Hardware components

The starting point in developing vision based applications is the proper choice of dedi-

cated hardware modules that, together combined, provide a reliable base for the machine
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2. Object recognition and 3D reconstruction in robotics

vision structure. In the following, common hardware components used in robot vision are

described, namely cameras, gaze orientation systems and digital processing elements used

for time critical applications.

Stereo camera systems

The most common devices used for image acquisition are the Charged Couple Device

(CCD) and the Complementary Metal Oxide Semiconductor (CMOS) sensors. Their

purpose is to convert optical images into electric signals. Extra circuitry is used for

converting the analog voltage into digital information. Camera systems build around one

image sensor are usually referred to as monocameras.

The problem with monocamera systems is that they only provide visual information in

form of 2D images and no depth sensing, needed by robotic systems to perceive the world

in a 3D form. This problem has been solved with the introduction of stereo cameras

composed, as the name suggests, of a pair of image sensors. Knowing the geometrical

characteristics, that is relative positions and orientations of the two sensors, geometrical

relations between the 3D imaged scene and the 2D data can be derived. In such a way the

3D environment can be reconstructed in a virtual space from 2D information. In order to

properly reconstruct the 3D visualized scene the position of the two image sensors relative

to each other has to be precisely known.

Although the basic principle of 3D scene reconstruction relies on two image sensors, a

variety of systems containing more sensors have been developed. The advantage of such a

multisensor camera is the increased precision of depth calculation and a wider field of view

coverage. State of the art research using multisensor cameras is 3D reconstruction from

multiple images, where a scene is to be reconstructed from a number of n images acquired

from n cameras simultaneous. Lately, such systems have been used in reconstructing large

areas, as for example cities [113].

Recently, as an alternative to classical stereo vision, a novel type of 3D sensor, which

uses frequency modulated pulses of infrared light to measure the distance from the sensor

to a surface [90], has been introduced. These types of devices are commonly referred to

as Time-of-Flight (ToF) cameras, or active cameras. Depth information is retrieved by

measuring the time needed for a pulse of infrared light to travel from the image sensor

to a surface and back. ToF cameras have been introduced as a faster alternative to

depth information calculation. Although the depth precision is relatively high for short

distances (maximum 10mm error for a distance below 1m), it decreases proportionally

with the distance by a factor of 1%. At the current state of this technology, one major

disadvantage of these cameras is low image resolution. This happends because the sensor

has to include, along with the visual sensor, extra circuitry for senders and receivers of

infrared pulses. Also, the precision of depth information is influenced by the nature of

the imaged surface. For example, a black surface reflects back considerably less infrared

light than a colored or white surface.
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Camera gaze positioning modules

In vision based systems, especially service robotics applications, the coverage of a large

field of view is needed. This requirement can be achieved by manipulating the viewpoint of

the camera system, a process also known as gaze positioning. Since camera parameters are

changed in order to facilitate the processing of visual data, this type of system is commonly

referred to as active vision [93, 41]. Although the term active vision includes the control

of several camera parameters (e.g. focus, zoom etc.), in this thesis only the closed-loop

orientation of a stereo camera system is considered, as explained in Chapter 5.3.

In robotics there are typically two known approaches for controlling the orientation

of a camera:

• Eye-in-Hand configuration, where the camera is mounted on the last joint of a

general purpose manipulator arm;

• Pan-Tilt Head (PTH) configuration, where the Position and Orientation (POSE) of

a camera is controlled by a 2-DoF unit; the pan and the tilt represent the angles

controlling the orientation of the camera’s viewpoint; in aviation, pan and tilt are

commonly known as the yaw and pitch, respectively.

For the second approach, both image sensors can be fixed on the same PTH unit, or

each sensor can be mounted separately on its own PTH. Mounting the sensors separately

introduces additional degrees of freedom, like vergence, representing the angle between

the optical axes of the two cameras, and baseline, representing the distance between the

cameras. Vergence control is used to cooperatively move the fixation point of a stereo

pair around a scene. As said before, the relation between the two image sensors has to be

precisely known in order to reliably control the coordination between both PTH units.

Image processing on dedicated hardware

One very important part of a machine vision system is its computational resources, or the

hardware elements on which the image processing algorithms exists. Depending on the

type of vision application, the choice for the computing hardware can be made. There

are basically two main technologies used for processing digital images:

• PC based processing, where the computing power is carried out on traditional com-

puter architectures, usually multiprocessor PCs with a high amount of computational

resources; in robotics, and particularly service robotics, PC based processing is one

of the most common approach used;

• Digital Signal Processing (DSP), which has as focus the optimization of the speed

of the image processing operations; DSP algorithms are typically implemented on

specialized processors called digital signal processors, or on purpose-built hardware

such as Application-Specific Integrated Circuit (ASIC); recently Field-Programmable

Gate Arrays (FPGA) technology made its way into image processing as a powerful,

relatively low cost, processing hardware with many promising application fields.
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It is worth to mention that lately camera manufacturers have begun to include build-in

processing hardware into cameras. For the design of small industrial automation applica-

tions, a basic number of image processing functions can be used directly from the camera

module.

2.2.2. Image representation

Camera systems usually provide digital electrical signals representing images of the viewed

scene. The representation of these signals has to be standardized and suitable for digital

processing. A grey level digital image is a two-dimensional function f(x, y) where the

value, or amplitude, of f at spatial coordinates (x, y) is a positive scalar quantity whose

physical meaning is determined by the source of the image [30]. Mathematically f(x, y)

is represented as an M ×N matrix:

f(x, y) =


f(0, 0) f(0, 1) · · · f(0, N − 1)

f(1, 0) f(1, 1) · · · f(1, N − 1)
...

...
...

f(M − 1, 0) f(M − 1, 1) · · · f(M − 1, N − 1)

 . (2.1)

The elements of the matrix 2.1 are called image pixels, or px. The pixels of f(x, y)

take values, named grey level values, in a finite interval:

0 ≤ f(x, y) ≤ Kgray, (2.2)

where in typical, 8-bit, computer implementation Kgray = 255.

In case of color images their digital representation is a matrix vector containing three

elements:

fRGB(x, y) =
[
fR(x, y) fG(x, y) fB(x, y)

]T
, (2.3)

where fR(x, y), fG(x, y) and fB(x, y) represent the primary red, green and blue compo-

nents of light, respectively. By adding together the three components a palette of colors

can be obtained.

In case of stereo cameras the output of the image acquisition system is a pair of

synchronized images:

{fL(x, y), fR(x, y)}, (2.4)

where fL(x, y) and fR(x, y) represent the left and right images acquired from the stereo

camera, respectively.

The relationship between the two camera sensors, mounted in a stereo correspondence

manner, is described by the camera’s vergence and baseline.
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The image processing methods explained below are applied in parallel to both the left

and the right images, as seen in Figure 2.1.

2.3. Image pre-processing

The image pre-processing stage aims at improving the acquired images or to transform

them in order to be suited for the next module, image segmentation. Also, as it will be

described in Chapter 5, a pre-processing operation is also the definition of an image ROI

on which object recognition algorithms will be applied. Usually, in robot vision, the pre-

processing operations are represented by image filtering and color space transformation.

Image filtering

Image filtering is commonly used in the removal of noise from input images and is de-

scribed, for the case of spatial domain, by the linear operation:

g(x, y) = G[f(x, y)], (2.5)

where f(x, y) is the input image, g(x, y) is the output image and G is an operator on f

defined over a neighborhood of (x, y). In this thesis, a smoothing linear filter [30] was

used for enhancing the quality of acquired RGB images.

Color image transformation

The representation of color images in digital computers is made according to standardized

color models, also named color spaces or color systems. A color model is essentially a

coordinate system where every point represents a specific color. Although in practice

there is a number of existing color models to choose from, in this thesis only two of them

are used, that is, the RGB (Red, Green, Blue) model and the HSI (Hue, Saturation,

Intensity) model.

Color models can be classified into hardware oriented and application specific mod-

els. The most common hardware-oriented color model is the RGB model. Most types of

camera systems used in robotics use the RGB color space for representing color images

provided as output. The RGB model, showed in Figure 2.3(a), is based on a Cartesian

coordinate system and the unit cube where colors take values in the interval [0, 1]. The

primary color components are specified by the 3 axes of the coordinate system. The cor-

ners of the RGB cube represent the primary and secondary colors, respectively. The origin

of the color cube corresponds to the black value. Between the origin and the outermost

corner, which represents the white value, various shades of gray are encountered.

The transformation from the RGB color space to gray level is commonly performed

as:
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Figure 2.3.: Hardware –RGB– (a) and application –HSI– (b) oriented color models.

f(x, y) = c1 · fR(x, y) + c2 · fG(x, y) + c3 · fB(x, y). (2.6)

where the values of the coefficients are typically addopted as c1 = 0.299, c2 = 0.587 and

c3 = 0.114.

When developing robot vision applications the problem with the RGB model is that it

does not describe color in a practical manner, that is, color information is spread in three

components. A solution to this problem is the HSI model, represented in Figure 2.3(b).

The advantage of this color space is that it decouples the intensity, or brightness, com-

ponent from the color information, stored in the hue and saturation image planes. In the

HSI model the color of a point is given by the hue component defined as the angle H of

the color circle in Figure 2.3(b). The hue H takes values in the interval [0, 2π], where 0

corresponds to the red color.

The saturation S represents the purity of a color, or the amount of white added to

a pure color. S is defined as the radius of the color circle in Figure 2.3(b). Finally, the

intensity I specifies the brightness of a point and is defined as the vertical axis of the

color cone in Figure 2.3(b). The transformation from the RGB to the HSI color model is

governed by a set of three equations:

H =

{
H if B ≤ G,

360−H if B > G,
(2.7)

where

H = cos−1

{
1/2 · [(R−G) + (R−B)]√

[(R−G)2 + (R−B)(G−B))]

}
, (2.8)

S = 1− 3

(R +G+B)
[min(R,G,B)], (2.9)
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I =
1

3
(R +G+B). (2.10)

In a computer, an HSI image is represented similar to its RGB counterpart, as:

fHSI(x, y) =
[
fH(x, y) fS(x, y) fI(x, y)

]T
, (2.11)

where fH(x, y), fS(x, y) and fI(x, y) represent the hue, saturation and intensity compo-

nents, respectively.

2.4. Image segmentation

Image segmentation is often one of the most difficult stages in the image processing chain

from Figure 2.1. It refers to the process of partitioning a digital image into subregions,

or sets of pixels, suitable for further computer analysis. The goal of image segmentation

is to separate objects of interest from the background by assigning a label to every pixel

in the image such that pixels with the same label share a specific visual characteristic.

According to the output result, segmentation is classified in two distinct approaches:

region based and boundary based segmentation. Both types will be explained here as an

application to a gray level image followed by the color image segmentation approach. In

this thesis the output of the segmentation step is regarded as a binary image containing

foreground, or objects (black pixels 1s), and background (white pixels 0s). The process

of image segmentation is also encountered with the name binarization.

Following, two image segmentation approaches will be discussed: traditional, open-

loop, segmentation and a novel, closed-loop, segmentation method introduced in [83].

2.4.1. Open-loop image segmentation

Region based segmentation

Region based image segmentation techniques are aimed at grouping pixels according to

common image properties like intensity values, texture or spectral profiles that provide

multidimensional image data.

The most common way to perform region based segmentation is histogram threshold-

ing. If the image pixels values from a histogram can be separated by a global threshold

TG, then the background pixels in the output binary image are represented by the pixels

in the input image with a value lower than TG and, respectively, the foreground pixels by

the ones with a value higher or equal to TG, as:

tG(x, y) =

{
1, if f(x, y) ≥ TG,

0, if f(x, y) < TG,
(2.12)
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where tG(x, y) is the output binary image.

A requirement when segmenting images with only one threshold value is that the

input image has to contain only one object and a uniform background. One way around

this problem is to define a threshold interval T = [Tlow, Thigh] as:

t(x, y) =

{
1, if f(x, y) ∈ T ,
0, if f(x, y) /∈ T ,

(2.13)

where f(x, y) is the pixel value at image coordinates (x, y). Tlow and Thigh are the low

and high thresholding boundaries applied to the histogram of image f(x, y).

An automatic approach for histogram thresholding is the so-called adaptive threshold

which thresholds the image based on a moving window, or mask. The optimal threshold

value Topt is calculated based on the mean pixels value of the mask. A more complicated

automatic thresholding technique is the so-called Otsu method which makes use of the

inter class variance between the object pixels and the background [74].

Boundary based segmentation

The purpose of boundary based segmentation is to extract the edges of the objects in an

image. This is commonly done by detecting sharp local changes between the intensity

of the pixels in an image. The output of this operations, also called edge detection, is a

binary image containing as foreground pixels the edges in the image, or the places where

intensity changes abruptly.

The basic principle of edge detection is to locally calculate the image gradient through

partial derivatives of order one or two. The gradient of an image f(x, y) at location (x, y)

is defined as the vector:

∇f =

[
Gx

Gy

]
=

[
∂f/∂x

∂f/∂y

]
. (2.14)

The calculation of the gradient is made using a mask shifted on the input image. The

resulted gradient image is then thresholded using relation 2.12. The problem with using

such an edge detector lies in the difficulty of choosing the appropriate threshold value. If

the threshold value is set too low, then the binary output image will contain false edges,

also called false positives. On the other hand, if the threshold value is too high, real edges

will be suppressed, edges also called false negatives.

The global thresholding of the gradient image has been considered in the development

of the canny edge detector [16]. Canny is widely used due to its performance regarding

time and quality of the calculated edges. The method represents an optimal edge detection

algorithm designed to achieve three objectives:

• optimal edge detection: all edges in the image should be found, as close as possible

to the real edges;
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• optimal edge points localization: the position of the obtained edges should be as

close as possible to the real edges;

• optimal edge point response: the calculated edge should be as thin as possible,

namely the detector should not identify multiple edges where only a single edge

exists.

The canny edge detector involves three sequential steps. At the beginning the input

image f(x, y) is convolved with a Gaussian smoothing filter :

G(x, y) = e−
x2+y2

2σ2 , (2.15)

where G(x, y) is a Gaussian function with standard deviation σ. This type of filtering sup-

presses noise in the input image, since the first derivative of a Gaussian used in calculating

the image gradient is susceptible to noise present on raw unprocessed image data.

The second step of the canny edge detection algorithm is to calculate the image

gradient magnitude, M(x, y), and direction (angle), α(x, y):

M(x, y) =
√
g2x + g2y , (2.16)

α(x, y) = tan−1
[
gx/gy

]
, (2.17)

where gx and gy are the horizontal and vertical directions of the image gradient, respec-

tively.

The obtained edges are thinned using non-maximum suppression, that is, four types

of filter masks are used to specify a number of discrete orientations of the edge normal:

horizontal, vertical, +45◦ and −45◦.

Finally, the obtained gray level image is binarized using a technique named hysteresis

thresholding which uses two thresholds: a low TL and a high TH threshold. The pixels

above TH are considered “strong” edge pixels and the one below TL false edges. The

pixels belonging to the interval [TL, TH ] , named “week” edge pixels, are considered edges

if they are connected to the already detected “strong” pixels.

According to [82], the low threshold can be expressed as a function of the high thresh-

old as:

TL = 0.4 · TH , (2.18)

Color based segmentation

One natural way to segment color images is through the HSI color model. This model

retains color information on separate image planes, that is the hue fH(x, y) and saturation

fS(x, y) images.
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In the hue image, color information is represented as pixel values belonging to the

interval [0, 2π], or [0, 359]. Having in mind that color is represented by the angle H,

defined on the unit circle from Figure 2.3(b), each pixel value in the interval [0, 359]

corresponds to a particular hue. Because in some computer implementations images are

stored using 8 bit arrays (255 pixel values), the hue interval has been divided by two to

fit in this representation. In this case, the hue varies in the interval [0, 179].

In order to differentiate between object colors, the hue component was divided into

color classes which take values in the interval [Tlow, Thigh]:

Cl ∈ [Tlow, Thigh], (2.19)

where l represents the number of the color class and Tlow and Thigh the minimum and

maximum color values across the object’s pixels. A pixel is considered as belonging to

one color class if its hue value resides in one of the object color class values.

The application of the histogram thresholding method from Equation 2.20 to the hue

plane image fH(x, y) results in a color segmentation method which separates a specific

colored object from the background:

tH(x, y) =

{
1, if fH(x, y) ∈ Cl,
0, if fH(x, y) /∈ Cl,

(2.20)

where tH(x, y) represents the binary thresholded hue plane image. For the sake of clar-

ity, an object color class Cl is referred in this thesis as the object thresholding interval

[Tlow, Thigh].

The saturation component is used in color segmentation as a mask that isolates further

regions of interest in the hue image. Typically, the saturation image is thresholded using

Equation 2.12 with a threshold equal to 10% of the maximum value in the saturation

image [30]. The result is the binary image tS(x, y). The final color segmentation result is

a binary image obtained through a pixel level logical AND operation between tH and tS:

t(x, y) = tH(x, y) AND tS(x, y), (2.21)

where t(x, y) is the final binary image output of color segmentation. The truth table of

the logical AND operation is given in Figure 2.4(b). An example of color segmentation

using the described procedure can be seen in Figure 2.4(a).

2.4.2. Closed-loop image segmentation

The image segmentation step from Figure 2.1 plays a crucial role in the 2D recognition

and 3D reconstruction of a robot’s environment. The operations following segmentation

can provide reliable results only if the input segmented image is of good quality, that is

with well segmented objects.
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Figure 2.4.: (a) Color segmentation example. (b) Logical AND operation.

The above presented segmentation methods provide good results when they are used in

constant reference conditions, like, for example, constant illumination. Here, the reference

is represented by the conditions for which the segmentation parameters were manually

tuned. If these conditions are changed segmentation will fail to produce reliable results.

If, for example, illumination varies, constant segmentation parameters will not be able to

properly extract the objects of interest.

A solution for the above problem is to automatically adjust the segmentation pa-

rameters. One possibility for this is to use the feedback mechanisms presented earlier

in Chapter 2.1. In [83] two feedback structures for control of image segmentation are

proposed. In Figure 2.5(a) sequential closed-loops at different levels of image processing

are introduced. Feedback information of each processing stage is used here for improving

the robustness of that specific stage. A second type of closed-loop for improvement of

image segmentation is the cascade control structure from Figure 2.5(b), where feedback

information for different loops is measured at the same image processing stage. In this

case the ”inner” control loops provide improvement of the processing result to a certain

level while its further improvement is achieved in ”outer” loops.

Image 
Acquisition

Pre-
processing Segmentation Image 

Acquisition
Pre-

processing Segmentation

Image 
Acquisition

Pre-
processing Segmentation 1 1

Image 
Acquisition

Pre-
processing Segmentation Image 

Acquisition
Pre-

processing Segmentation

Image 
Acquisition

Pre-
processing Segmentation 1 1

(a) (b)

Figure 2.5.: Sequential (a) and cascade (b) control structures for control of image segmentation.

In [83], a measure of output binary image quality is proposed as a feedback variable

for the control structures from Figure 2.5. The so-called two-dimensional (2D) entropy

measure, defined in Equation 2.22, is to be used in both region and boundary based
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segmentation. The 2D entropy aims at quantifying the degree of connectivity between

object pixels.

S2D = −
8∑
i=0

p(1,i) log2 p(1,i), (2.22)

where p(1,i) is the relative frequency, that is, the estimate of the probability of occurrences

of a pair (1, i) representing a foreground pixel surrounded with i foreground pixels:

p(1,i) =
number of black pixels surrounded with i foreground pixels

number of foreground pixels in the image
. (2.23)

The 2D entropy S2D can be considered as a measure of disorder in a binary segmented

image since, as demonstrated in [83], the higher the 2D entropy, the larger the disorder

(noise, breaks) in a binary image is. Hence, the goal of the feedback control structures

would be the minimization of S2D.

The relation between the 2D entropy 2.22 and a region based segmented image is

best understood on the synthetic images from Figure 2.6, where three types of segmented

images are shown: ideal, noisy and broken, respectively. The results of Equation 2.22 on

the three binary images are presented in Table 2.2. As can be seen, the 2D entropy has

the minimum value for the case of the ideally segmented image.

(a) (b) (c)

Figure 2.6.: Possible connectivity of object pixels in region based segmentation. (a) Ideal. (b)
Noisy. (c) Broken.

Table 2.2.: The 2D entropy from Equation 2.22 of the synthetic images from Figure 2.6.

Ideal Noisy Broken

2D entropy S2D 1.3921 2.3628 2.7499

A similar demonstration as above, ending with same conclusions, is also given in [83]

for the case of boundary segmented images. The benefit of the measure in Equation 2.22

has been demonstrated in [83, 31, 84, 86, 85] for the case of two industrial image process-

ing applications, that is, improvement of character recognition on metallic surfaces and

improvement of corner detection in images taken from a ship welding scenario.
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In Chapter 4, two closed-loop segmentation methods, based on inclusion of feedback

control in image processing, are proposed. Their purpose is to improve the robustness of

vision systems in service robotics.

2.5. Feature extraction

Feature extraction, also known as representation and description, is the intermediate

operation between low and high level image processing stages. From input binary images,

attributes, or features, are extracted. These features should describe the interdependency

between the segmented pixels. This process is also known as the transformation of the

input segmented image into a set of features.

One straightforward purpose of feature extraction is the classification of the objects

present in the imaged scene. For this reason, the chosen features for describing the objects

must be invariant to translation, rotation, scale, or mirroring. The first step in feature

extraction is to extract the boundary of the contours from the raw binary image and

convert them into a form suitable for analysis, a process also known as contour extraction.

Contour extraction

Depending on the segmentation type, region or boundary based, the objects in a binary

image can be represented by blobs of foreground pixels, for the case of region segmentation,

or from connected edge pixels, for the case of boundary segmentation. The principle

behind contour extraction is to order the pixels on the boundary of segmented objects in

a clockwise, or counterclockwise, direction. The procedure is also referred to as boundary

(border) following [30].

A popular method for contour extraction is the so-called chain codes. Chain codes

describe a boundary by a connected sequence of straight-line segments of specific length

and direction. It is typically based on 4- or 8-connectivity of the segments. In this type

of representation, also known as a Freeman chain code, the direction of each segment is

coded as a sequence of directional numbers, from one pixel to the next [30]. An example

of an 8-directional chain code of the simple object boundary from Figure 2.7 is:

0 0 0 0 6 0 6 6 7 7 6 4 5 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

Such a digital boundary can be further approximated by a polygon. The purpose

of polygonal approximation is to transform the extracted chain code into a shape that

captures the essence of the boundary and uses the fewest possible number of segments.

A popular method used in image processing for polygonal approximation is boundary

description by a minimum-perimeter polygon [30]. From the calculated polygon a number

of features can be extracted, such as its area, perimeter, diameter, major and minor axis

together with their eccentricity (ration of major to minor axis), curvature etc.
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Figure 2.7.: 8-directional chain-coded boundary of a segmented object.

The extracted boundary, or polygon, should be represented for classification by a

set of descriptors invariant to linear transformations like translation, rotation, scale, or

mirroring.

Moment invariants

A set of invariant object descriptors are a set of seven coefficients proposed by Hu [38].

These coefficients are derived from the moments of the object boundary extracted with

an appropriate contour extraction method. In case of a digital image intensity function

f(x, y), the moment of order (p+ q) is:

mpq =
∑
x

∑
y

xpyqf(x, y), (2.24)

where x and y are pixel coordinates in the considered image boundary region. The central

moments µpq are defined as:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y), (2.25)

where p, q = 1, 2, 3, ..., x̄ = m10/m00, ȳ = m01/m00. In this thesis, for object recognition,

two invariant moments are used:{
I1 = η20 + η02,

I2 = (η20 − η02)2 + 4η211,
(2.26)

where ηpq is the normalized central moment:

ηpq = µpq · µ
−1− p+q

2
00 . (2.27)
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Hough transform

One problem when using boundary based segmentation is that very often the obtained

contour edges are not connected (e.g. small breaks between the edge pixels). This phe-

nomenon happens due to noise in the input image, non-uniform illumination and other

effects that introduce discontinuities in the intensity image.

The hough transform [37] is a method used in linking edge pixels based on shape.

Although any type of shape can be represented by the so-called generalized hough trans-

form, in practice, because of computational expenses, shapes like lines, circles and ellipses

are used. In this thesis, the hough transform is used in combination with the canny edge

detector for finding boundaries of textured objects, as explained in Chapter 4.

The principle of the hough transform for lines detection, represented in Figure 2.8, is

based on the general equation of a straight line in slope-intercept:

yi = axi + b, (2.28)

where (xi, yi) is a point on the line.
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Figure 2.8.: Hough transform principle. (a) xy−image plane. (b) ab parameter space. (c) ρθ pa-
rameter space.

Through point (xi, yi) an infinite number of lines pass, all satisfying Equation 2.28

for different values of a and b. If, instead of the xy−image plane, the line equation is

represented with respect to the ab−plane from Figure 2.8(b), also named parameter space,

then the equation of a single line for a fixed pair (xi, yi) is obtained:

b = −xia+ yi. (2.29)

If a second point (xj, yj) is collinear with the point (xi, yi) in the xy−image plane

then, in parameter space, the two corresponding lines intersect at some point (a′, b′), as

presented in Figure 2.8.

One problem with using the parameter space ab is that a, the slope of a line, ap-

proaches infinity as the line approaches the vertical direction. A solution to this problem

is to use the normal representation of a line:
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xcosθ + ysinθ = ρ. (2.30)

Using relation 2.30 the lines in the xy−image plane are represeted by sinusoidal curves

in the ρθ−parameter space from Figure 2.8(c). The intersection of the sinusoidal curves

(ρ′, θ′) represents collinearity of points in the xy−image plane.

The parameter space ρθ is subdivided into so-called accumulator cells. An accumu-

lator cell A(i, j) corresponds to a quantification of the point (ρi, θj) in parameter space

coordinates. Initially the accumulator cells are set to zero. For every foreground pixel

(xk, yk) in the xy−image plane, the parameter θ is varied along the θ−axis. For each

value of θ, the corresponding ρ is obtained using Equation 2.30. If a specific θp results in

a solution of ρq, then the accumulator cell A(p, q) is increased with value 1:

A(p, q) = A(p, q) + 1. (2.31)

At the end of the transformation, a number n in A(i, j) means that n points in the

xy−image plane lie on the line xcosθj + ysinθj = ρi. The more foreground pixels lie on

a line the higher the respective accumulator value is. Since the accumulator represents

collinearity for all the foreground pixels in a binary image it is meaningful for representa-

tion to threshold it, namely to consider as lines only the ones which have an accumulator

value higher than a specific threshold THG. In Chapter 4 of this thesis, an algorithm

for automatic calculation of the optimal threshold THG, based on the results of feature

extraction, is proposed.

2.6. Classification

The final stage of 2D image processing is the classification of the extracted features. In

classification, a set of features is usually named a pattern vector. The field of feature

classification includes a broad range of decision-theoretic approaches aimed at labeling

the image features to one or more distinct classes. An algorithm that fulfils this process

is commonly referred to as a classifier. According to how class knowledge is specified,

classification can be separated in two categories:

• supervised classification where object classes are a priori specified by an analyst;

• unsupervised classification where input data is automatically clustered into sets of

prototype classes; the number of desired classes is usually specified.

The simplest approach for classification is the so-called Minimum (Mean) Distance

Classifier, which computes the distance between a measured, unknown, pattern vector

and the mean of a set prototype vectors. A prototype vector is composed of a number of

training features a priori specified:
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mj =
1

Nj

∑
x∈ωj

xj, j = 1, 2, . . . ,W, (2.32)

where xj is a pattern vector, Nj is the number of pattern vectors from class ωj and W is

the number of pattern classes.

In this thesis, the Euclidean distance is used in assigning the class membership of an

unknown pattern vector x, that is x is assigned to the class which has the closest prototype

to it. Since the training prototype vectors are given a priori, the method belongs to the

supervised classification category.

Although in literature a large number of powerful classification methods can be found,

in this thesis the stress is on improving the overall robot vision image processing chain

from Figure 2.1. The complexity of classification is hence maintained at a medium level.

In a number of robotic systems [68, 42] the robustness of image processing is achieved

using powerful classification algorithms. A drawback of this approach is further 3D re-

construction, since features obtained from image segmentation are used for defining the

attributes of the object in the virtual 3D space. Motivation for robust image segmentation

will be given in Chapter 4.

2.7. 3D reconstruction

According to the results of classification, a decision is made regarding how the extracted

object features will be used in the 3D reconstruction phase. For example, if an object is

classified as a bottle, then the object’s features used in 3D reconstruction will be the top

and bottom coordinates of the object and its diameter. On the other hand, if an object is

classified as a book, then the features important for 3D reconstruction are its four corners.

A classical approach to 3D reconstruction is the so-called epipolar geometry [34],

which refers to the geometry of stereo vision. The principle behind epipolar geometry

relies on the fact that between an imaged point in the real 3D world and its projection

onto 2D images exist a number of geometrical relations. These relations are valid if the

cameras are approximated using the pin hole camera model [34]. This model refers to an

ideal camera with its aperture described as a point and no lenses are used to focus light.

Knowing the relative position of two cameras with respect to each other, the imaged 3D

point can be reconstructed in a 3D virtual environment using triangulation.

The position of a camera in the real world is described by a projection matrix obtained

through the process of camera calibration which calculates the POSE of the camera with

respect to a known reference coordinate system. For the case of a stereo camera two

projection matrices are used, one for the left camera lense QL and one for the right lense

QR. A projection matrix is composed of two types of parameters:

• intrinsic parameters Cint, which describe the internal characteristic of the camera,

that is focal length, intersection of the optical axis with the image plane, pixel aspect
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ration and pixel skew;

• extrinsic parameters Cext, representing a homogeneous transformation describing

the POSE of the camera with respect to a reference coordinate system to which the

reconstructed 3D points are reported.

When both the intrinsic and extrinsic camera parameters are known, the full camera

projection matrix can be determined as

Q = Cint · Cext. (2.33)

In this thesis, the 3D reconstruction module is considered as a black box which requires

as input the object type, obtained through classification, and its extracted features.
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3. ROVIS machine vision architecture

Integrating visual perceptual capabilities into the control architecture of a robot is not a

trivial task, especially for the case of service robots which have to work in unstructured

environments with variable illumination conditions. This is also the case of the machine

vision architecture ROVIS (RObust machine VIsion for Service robotics) with which the

service robotic system FRIEND is equipped.

In machine vision systems, more particular service robots, an important role is played

not only by the image processing algorithms itself, but also by how the visual processed

information is used in the overall robot control architecture. This process has high com-

plexity since image processing involves the management of a large quantity of information

which has to be used in high level action planning. A good candidate for modeling large

scale systems, like the control architecture of a service robot, is the Unified Modeling

Language (UML) [65] which wraps together several graphical language tools for modeling

object-oriented problems. A short description of UML can be found in Appendix B.

In this chapter, the concept of the vision system ROVIS, modeled with the help of

UML, is presented together with its intergration into the overall control architecture of

the robotic system FRIEND. The stress here is on the concept of ROVIS and on the

structure of the information flow within the vision system. To begin with, as comparison,

the vision systems of previous FRIEND robotic platforms are presented.

3.1. FRIEND I and II vision systems

The robotic systems FRIEND I and II (Functional Robot with dexterous arm and user-

frIENdly interface for Disabled people) are service robots developed at the Institute of

Automation (IAT) from University Bremen. The research started back in 1997 when the

building of the first FRIEND prototype began.

Basically, all FRIEND robots consist of a manipulator arm mounted on an electrical

wheelchair and various sensors needed to understand the surrounding environment for

the purpose of manipulator path planning and object grasping. The first FRIEND [64],

presented in Figure 3.1(a), was equipped with a MANUS arm, while the second version,

FRIEND II [104] (see Figure 3.1(b)) was equipped with a 7-DoF arm with functional spec-

ifications given by IAT. Another key component of both robots is the Human-Machine

Interface (HMI) used to communicate with the user of the robotic platform. The impor-

tance of the HMI is related to the overall robot control architecture MASSiVE (MultiLayer

Architecture for SemiAutonomous Service-Robots with Verified Task Execution), presented
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in Chapter 3.4.3. MASSiVE has as core concept the integration of the cognitive capabil-

ities of the user in the working scenarios of the robot [61, 62, 63]. For example, the user

can be asked by the system to assist it at specific operational stages where autonomous

task execution fails (e.q. the object of interest was not detected, hence the system will ask

the user to manually control the movement of the manipulator arm in order to bring it

to the grasping position) [80]. This concept of “human-in-a-loop” was also used in other

assistive robotic systems presented in [100, 23, 109, 25].

(a) (b)

Figure 3.1.: IAT FRIEND I (a) and II (b) assistive robots.

The first experiments involving vision in FRIEND were based on the visual servoing

principle [21]. The robotic arm MANUS was equipped with an “eye-in-hand” camera

used for detecting a marker placed on the object to be grasped [51].

The “eye-in-hand” camera setup was replaced with a pair of pan-tilt-head (PTH)

zoom cameras mounted on a rack behind the user of the robotic system [104]. Although

the two cameras form a stereo vision system, they were used in a visual servoing manner

where no camera calibration is needed. In this second case, the manipulator arm was

equipped with an active marker which was tracked in the input image, alongside with the

tracking of features of the object of interest. Furthermore, the usage of color as a feature

to track was introduced as a replacement to the artificial marker used before. Objects were

divided into color classes and detected as separate entities in the environment [104, 103].

The implemented visual servoing control structure is displayed in Figure 3.2.

-

Changing of camera
orientation

S I
desired

S I
actual

e I

Controller Camera

Image Processing Image Acquisition

Figure 3.2.: Block diagram of the control structure for adjustment of camera parameters in the
FRIEND I system.
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In visual servoing with an “eye-in-hand” camera, the goal of the closed-loop system is

to minimize the control error eI represented as the difference between the current position

of the tracked image feature SIactual = (u, v)T and the coordinates of the image center

SIdesired = (u0, v0)
T . For the case of static cameras mounted behind the user, the error is

measured with respect to the position of the active marker mounted on the manipulator

arm: SIdesired = (uarm, varm) [105]. The control error can be expressed as:

eI = [u− ui, v − vi]. (3.1)

where (u, v) represents pixels coordinates in the input image I and:

(ui, vi) ∈ {(u0, v0), (uarm, varm)}. (3.2)

The control signal is calculated using a proportional controller and the inverted image

Jacobian matrix J−1. This matrix describes the relationship between pixel motion in im-

ages and changes in camera orientation [105]. A comprehensive survey on visual servoing

can be found in [39, 92].

The development of the FRIEND II robot, depicted in Figure 3.1(b), represents the

next big step towards the concept of the vision architecture ROVIS described in this thesis.

Because of the high complexity of FRIEND, the visual servoing principle was replaced

with a “look-and-move” strategy which separates machine vision from manipulator path

planning and object grasping control. Also, the MANUS manipulator was replaced with

a 7-DoF AMTECr arm for improving object manipulation performance. Details about

the components and algorithms used in FRIEND II can be found in [104].

One drawback of the FRIEND II vision system was the lack of a vision architecture to

sustain and manage the large amount of image processing operations used in visual robot

control. The vision algorithms were implemented as sequential functions in the MASSiVE

architecture.

Another existing problem in FRIEND II is represented by the lack of image processing

robustness with respect to external influences, like variable illumination conditions. The

vision system of FRIEND II required a constant illumination to reliably detect objects

of interest. Also, because of the fixed color classes, only objects which were a priori

learned by the robot’s control system could be recognized, thus making the functionality

of FRIEND rigid with respect to the working scenarios. In order to overcome these

problems the machine vision system ROVIS is introduced.

3.2. The ROVIS concept

The goal of ROVIS is to recognize objects of interest and reconstruct them in a 3D virtual

environment for the purpose of manipulative motion planning and object grasping [73].

Although the basic concept of ROVIS is not derived from the neuro-biological func-
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tioning of the human brain, it is inspired from how a human person visually analyzes a

scene, namely cognitive psychology [69]. This process is depicted in the environmental

setting from Figure 3.3, where a typical all-day-living scene is found. When a human

visualizes a scene he/she is not analyzing the whole visual field in a single moment of

time but focuses his/her attention to several objects present in the environment, for ex-

ample a book shelf at moment ti or a cup of coffee at moment ti+K . In computer vision

terms, the focus of attention of a human on a particular area in the visualized scene can

be interpreted as a Region of Interest (ROI) in an image.

Mmm, coffee or
maybe a good book.

Figure 3.3.: Human focus of attention in a complex scene.

The ROVIS architecture has been developed starting from the above description and

the inclusion of feedback structures at image processing level.

3.2.1. Classification of objects of interest

In service robotics applications, a large number of different objects with different charac-

teristics are found. This can be seen in Figure 3.4, where example scenes from support

scenarios of FRIEND are shown. Details regarding the support scenarios are given in

Chapter 3.4. In ROVIS, the objects are saved in a virtual 3D model of the surroundings,

named World Model. From the image processing point of view, the objects of interest are

classified into two categories:

• Container objects, which are represented by relatively large objects that have a fixed

location in Cartesian space (e.g. fridge, microwave, book shelf, tables, library desk

etc.);
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• Objects to be manipulated, which can be found anywhere in the scene, inside or

outside container objects (e.g. bottles, glasses, meal-trays, books etc.).

(a) (b)

Figure 3.4.: Typical service robotic scenes from the FRIEND support scenarios. (a) Activities
of daily living. (b) Library.

In FRIEND, grasping an object to be manipulated from a container is represented, for

example, by grasping a bottle from a fridge.

Since objects to be manipulated come in various characteristics (e.g. different shapes

and colors), their detection has to be made without use of a priori information regarding

their structure. In Chapter 6, two robust object recognition methods that cope with lack

of a priori knowledge regarding objects are proposed. Both methods rely on the robust

segmentation algorithms presented in Chapter 4.

In order to plan a collision free manipulator motion, container objects have to be

reliably detected. Bearing in mind that the container objects in the FRIEND environment

are a permanent feature of the scenarios, the SIFT method [10] is used for their localization

and 3D reconstruction. This method uses a model image to train a classifier off-line.

During on-line system operation, the SIFT algorithm searches for the model image in the

scene through a matching based algorithm. Once the model image has been detected,

its Position and Orientation (POSE) can be reconstructed. Knowing the position of the

model image and the geometry of the container, its POSE can be reconstructed. The

POSE of containers is one way to define the image ROI, as explained in Chapter 5.

The different objects of interest are represented in ROVIS by object classes. Whenever

2D object recognition and 3D reconstruction is activated, relevant information of object

classes, involved in the robot’s operation, are made available in the World Model. This

information is specified via object class characteristics that are encoded in an extensible

ontology. This ontology is depicted in Figure 3.5, where the objects involved in the ADL

scenario of FRIEND, as well as in the Library scenario, are pointed out. As an example, for

the case of the fridge, which is a part of the ADL scenario, the characteristics IsContainer,

HasShelves and HasDoor will be made available. For the tray with meal (meal-tray) the

knowledge about its components Plate, Spoon and Lid is supplied.
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Figure 3.5.: Hierarchical ontology of objects involved in service robotic support scenarios (ADL
and Library).

The coded object class information is used in classifying segmented objects, improve

segmentation and final 3D reconstruction, as will be explained in Chapter 6. The extracted

object features are used together with object classes to construct a virtual 3D environment.

In ROVIS, feature extraction is divided into two categories:

• feature extraction for object classification, which deals with the extraction of those

attributes needed to recognize certain objects in the 2D image plane;

• feature extraction for 3D reconstruction, represented by the extraction of features

from 2D images than can describe the 3D shape of the imaged objects; for this

second type of feature extraction, objects attributes from synchronized stereo images

are acquired, together with the geometrical relationship between the stereo camera

lenses.

Object classes provide a description of how extracted object features are to be used

in 3D reconstruction, that is, the positions of the feature points of an object.

3.2.2. ROVIS block diagram

Following the above reasoning, the vision architecture ROVIS has been developed, with

its block diagram presented in Figure 3.6. Arrows connecting the blocks illustrate the

flow of information through the ROVIS system as well as the connections of the ROVIS

components with the external modules, the HMI and other reactive operations in the

robotic system. The HMI handles input commands from the user, or patient, to the

FRIEND robot and subsequently to ROVIS. Depending on the dissabilities of the patient

(e.g. in case of spinal cord injuries, which vertebra is fractured), different input devices
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are to be used. If the patient still has some motoric capabilities in its upper limbs, than it

can send commands to FRIEND through a hand joystick. For patients which are disabled

from the neck down, a chin joystick is used as input device. Alternative solutions like

speech recognition and Brain Computer Interface (BCI) are also implemented for patients

with no motoric abilities. These devices are used to control a cursor on a display monitor.

Different buttons on the display signify different robotic commands.

As can be seen from Figure 3.6, there are two main ROVIS components: hardware and

object recognition and reconstruction chain, also referred to as the image processing chain.

The connection between ROVIS and the overall robot control system is represented by the

World Model, where ROVIS stores the processed visual information. The robustness of

ROVIS with respect to external influences (e.g. complex scenes, or variable illumination

conditions) resides in two key aspects:

• automatic calculation of an image ROI on which further image processing operations

are applied;

• inclusion of feedback structures within vision algorithms and between components

of ROVIS for coping with external influences.

Camera Pan-
Tilt Head

Stereo Images
Acquisition ROI Definition

Robust Feature-Based 2D 
Recognition of Objects to 

be Manipulated

3D Object 
Reconstruction

World 
Model

Camera 
Calibration

Container 
Detection

ROVIS Hardware ROVIS Object Recognition and Reconstruction

ROVIS Initialization

Other
Reactive

Operations

Human-Machine Interface

Chin 
Control

Speech 
Recognition

Brain Computer 
Interface

User Interaction

QL, QR

Figure 3.6.: Block diagram of ROVIS, the robust vision architecture for service robotics.

The ROVIS hardware consists of a stereo-camera system mounted on a PTH. The

camera views the scene in front of the service robot. The viewing angle of the sensors can

be changed through the pan-tilt control so that the container required for a particular

working scenario can be detected in the image. This is illustrated in Figure 3.6 by the

feedback from Container Detection to the Camera Pan-Tilt Head block.

The vision system is initialized through the ROVIS Camera Calibration procedure [4],

which calculates the left and right camera projection matrices, QL and QR, respectively.
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These matrices describe the homogeneous transformation between the robot’s reference

coordinate system W, located at the base of the manipulator arm, and the left CL and

right CR coordinate systems of the lenses of the stereo camera, respectively. In this thesis,

the reference coordinate system will be named as the World coordinates. As it will be

explained in Chapter 6, the projection matrices are used by the 3D Object Reconstruction

module to calculate the POSE of the objects to be manipulated with respect to the world

coordinates. The calculated calibration data is further stored in the World Model.

The ROVIS object recognition and reconstruction chain consists of a sequence of

image processing operations used in the extraction of the features needed for both the 2D

recognition and 3D reconstruction of objects. One main feature of ROVIS is to apply the

vision methods on the image ROI rather than on the whole image. This is motivated by

the observation that people focus their visual attention on the region around an object

when they grasp it, as illustrated in Figure 3.3.

In Fig. 3.7 the interconnections of ROVIS with other components is illustrated using

UML use cases. ROVIS is connected with two other use cases: the HMI and the system’s

World Model. The user of FRIEND is modeled in Fig. 3.7 as an actor. He interacts

with ROVIS through the HMI. The Environment, or scene, in which FRIEND operates

is modeled also as an actor connected to the vision architecture. The Sequencer, detailed

in Chapter 3.4, is modeled as the requester of visual information. The predefined task

knowledge with which the Sequencer plans sequences of operations is formally specified

and verified a priori in a scenario-driven process [79]. It is flexibly applicable in different

situations and environments due to the usage of object classes, as detailed below. The

visual data processed by ROVIS is finally stored in the World Model.

Environment
Sequencer

ROVIS

HMI
User

World
Model

Environment
Sequencer

User

Page 1 of 1

Figure 3.7.: ROVIS general use case diagram.

Another important requirement for ROVIS is the automatic construction of the object

recognition and 3D reconstruction chain, which puts together sequences of image process-

ing operations needed for object detection. The model of this process is depicted in

Fig. 3.8. The five types of basic image processing operations, or primitives, are modeled

as five use cases: Image Pre-processing, ROI Segmentation, Feature Extraction, Object

Classification and 3D Reconstruction. The ROI definition algorithms and the camera

calibration methods are considered pre-processing operations. In order to achieve a high

robustness of the vision system with respect to external influences, the five types of image

processing methods are connected to an extra use case which models feedback structures
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within image processing operations. Depending on the type of objects that have to be

recognized, appropriate object recognition operations are called. For example, for the case

of uniform colored objects, region based recognition is to be used for object detection [30].

On the other hand, the detection of textured objects is performed via boundary based ob-

ject recognition [30]. The dynamic image processing chain is automatically constructed by

the Algorithms Executer which connects the vision methods needed by a specific scenario.

Algorithms Executer

Image
Pre-processing

Image
Segmentation

Feature
Extraction

Object
Classification

3D
Reconstruction

Feedback
Control

Image
processing
chain
generation

Algorithms Executer
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Figure 3.8.: UML modeling of basic image processing primitives.

3.2.3. Interest image areas in ROVIS

An image ROI can be defined for two cases which differ with respect to the level of

a priori knowledge about the location of the object to be manipulated within the image.

In the first case only a partial knowledge about the object environment is available. For

example, as explained in Chapter 3.2.1, in the FRIEND system the available information

through object classes is of the form: ”the object is in the fridge” or ”the object is on the

shelf”. Starting from the reconstructed 3D POSE of the detected container, the container

region in the image is obtained using 3D to 2D mapping. If the container is not in the

Field of View (FOV) of the stereo camera, top-down ROI definition through camera gaze

orientation is used, as explained in Chapter 5.3. In this case the camera orientation is

changed in a visual feedback manner until the container is positioned in the middle of

the imaged scene. The recognition of the container is done either using the robust object

boundary detection method from Chapter 4.2, or by SIFT model based recognition. The

resulting image region enclosing the container, in which the object of interest is located,

represents the image ROI. Hence, in this case, the defined ROI encloses all the objects

present in the container and not just the object of interest. For example in the ADL

scenario, where one of the task of the manipulator is to fetch a bottle with a drink from

the fridge, such situation corresponds to a user’s command ”I want a drink”.
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The second possible case regarding ROI definition is the case where precise information

on the object’s position within the image is available through the HMI. For example, the

user can locate the object of interest by using a particular action, such as clicking on

the displayed image using a special input device, like a chin joystick, as illustrated in

Figure 3.6. For the case of ADL scenario, starting from the user’s command ”I want this

drink” and an interest image point defined by the user, the size of the rectangular image

ROI is automatically adjusted in order to fully bound the object of interest, as it will be

explained in the closed-loop image ROI definition algorithm from Chapter 5.

3.2.4. Robustness in ROVIS through feedback mechanisms

In order to improve the robustness of the ROVIS system, the inclusion of feedback struc-

tures in and between the various processing components has been suggested.

The development of an overall feedback strategy for controlling ROVIS would be to

complex to implement and analyze. The solution to the control problem is the application

of the decomposition technique [40] to the vision architecture. The decomposition tech-

nique is normally used when developing control methods for large complex plants where

the control of the overall process would be extremely difficult due to the large number of

variables. Thus, the vision system from Figure 3.6 is not treated as a whole process that

has to be controlled, but as a composition of different subsystems that can be individually

controlled (e.g. control of ROI definition, control of object recognition etc.). The overall

robustness of the system can be achieved by developing robust subcomponents of ROVIS.

In ROVIS two types of such closed-loops are introduced:

• feedback structures within image processing operations;

• feedback loops between the various components of ROVIS.

Feedback structures within image processing operations

The application of control in image processing deals with the inclusion of feedback loops

within image processing operations to improve their robustness with respect to external

influences. In [6, 7], two closed-loop image processing algorithms, used in the FRIEND

system for object recognition, are introduced. The purpose for the inclusion of feedback

loops in the vision operations of ROVIS is to automatically determine the optimal work-

ing points of the parameters of these operations, thus achieving system robustness with

respect to external influences.

In [83], two types of closed-loops for image processing purposes are proposed, both

detailed in Chapter 2. The basic principle of feedback in image processing is to auto-

matically adjust the values of the processing parameters according to the output image

quality measure, or controlled variable. Using this measure an error between the reference

values and the current output can be calculated. The resulted error is used in determining

the optimal working point of the image processing tuning parameter, also called actuator
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variable. The stress in [83] is on the importance of the choice of the pair actuator variable

– controlled variable for the success of the vision application.

The novel vision algorithms presented in Chapters 4, 5 and 6 are based on the concept

of including feedback control within image processing operations in order to improve their

robustness.

Feedback loops between ROVIS components

This second type of closed-loops is used for setting a synchronization method between the

various components of the vision system. As an example, in Figure 3.6 a loop between

the image ROI definition algorithms and the control unit of the camera gaze orientation

system can be seen. Also, another loop is introduced from image ROI definition to the

HMI component, loop which actually represents a direct feedback to the user of the robotic

system. This concept of human-in-the-loop was also treated in [99]. As said before, for

user interaction, different devices like chin control, speech recognition, BCI or a hand

joystick can be used.

3.3. Architectural design

The image processing flow from Figure 3.6 is implemented as ROVIS operations that can

be activated by the Sequencer (see Chapter 3.4), from the overall control architecture of

the service robot. The Algorithms Executer is responsible for putting together the proper

image processing methods within the operations.

Besides providing object class characteristics during task execution, the task planner

within the Sequencer also operates on the basis of object classes and plans context-related

operations. Among others, the following class-based categories of ROVIS operations can

be activated by the Sequencer:

• AcquireObjectBySCam: Determine the object’s location and size via the stereo cam-

era (SCam) system. This operation is used to determine single objects (e.g. a

handle), or containers where other objects are placed (e.g. fridge, table, gripper);

• AcquireGrippedObjectBySCam: Determines the gripping location and size of the

object in the gripper via SCam;

• AcquireObjectInContainerBySCam: Determine location and size of an object in a

container via SCam.

These ROVIS operations are used during execution of a task, but also within the initial

monitoring process, which is performed in the Sequencer after task activation by the user.

Initial monitoring is the procedure which organizes the supply of scenario-related object

characteristics in the World Model according to the object anchoring principle [78]. This

sets the basis for distinguishing between the handling of indefinite objects of a certain

object class (e.g. a bottle) within the ROVIS operations or the handling of a definite
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instantiation of a specific object class (e.g. the small green bottle). The difference between

indefinite and definite objects is a runtime decision during anchoring, where a connection

is established between symbolic object characteristics and concrete sub-symbolic data,

like with the values small for the size and green and color of the bottle in this example.

Consequently, the pre-structured task knowledge, object classes and their character-

istics allow to build universal operations in ROVIS as well as dynamic image processing

chain construction according to a given scenario and context.

3.3.1. Software architecture

The overall UML software structure of ROVIS can be seen in Figure 3.9. The ROVIS

CORE, which contains the Algorithms Executer, is the main part of the architecture.

Using the object oriented programming concept of polymorphism [95], the set of image

processing methods can be accessed by the Algorithms Executer through a pointer to

the CBaseAlgorithm class from which all the vision methods are derived. Further, the

Algorithms Executer dynamically constructs the image processing chain. In order to

distinguish between normal functions and the operations required by the Sequencer, we

will name the last ones skills. The servers providing such skills are called skill servers,

such as the ROVIS Skill Server. The ROVIS skill server acts as an interface from the

vision system to other components. Through it, the Sequencer calls the image processing

operations made available by the skill server interface IROVISSkillServer. This server is

only one of the skill servers used by the Sequencer in task planning. The ROVIS hardware

is represented by the stereo camera and PTH unit accessed by the two hardware server

interfaces: ICameraHardwareServer and IPTHHardwareServer.

The five types of image processing primitives from Figure 3.8 are implemented in

five base classes derived from the common CBaseAlgorithm class, as seen in Figure 3.10.

Here, an extra class is added for the camera calibration algorithms. The package Feedback

Structures models the closed-loop control algorithms in two separated classes: CClass-

icControl, for the classical error-based control methods, and CExtremumSeekingControl,

for control based on extremum searching. Two types of basic vision algorithm classes can

be distinguished:

• traditional, open-loop, image processing methods;

• base classes of the algorithms which are using feedback structures.

The process of developing vision algorithms in ROVIS is depicted in Figure 3.11. The

methods are developed and tested with the help of the ROVIS Graphical User Inter-

face (GUI) from Figure 3.12. The GUI has a direct connection to the image processing

methods, thus simplifying the development of the algorithms. No adaptation from the

implementation and testing platform to the on-line execution is needed, that is, the vision

algorithms are created and developed in only one place.
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Figure 3.9.: ROVIS software architecture.

3.3.2. Execution of vision algorithms

In Fig. 3.13, the components involved in the execution of a typical skill are presented. In

the center of the diagram is the ROVIS skill server interface which binds all the compo-

nents together. For a better understanding of the process, a skill example, which provides

as result the 3D position of an object, is considered: AcquireObjectBySCam. The in-

put arguments of this skill are the task-related object names which are used to extract

object-related information as provided during initial monitoring or previous executions.

Based on this information, the dynamic generation of the image processing chain by the

Algorithms Executer takes place. This process is started by the Sequencer via skill call.

First, the necessary hardware is actuated. For the case of the vision system, the stereo

camera field of view is changed and the stereo images pair acquired. Within the skill, the

Algorithms Executer combines vision algorithms with the help of their basic properties

which reside in the algorithms base class. These are the properties Name, Description,

Category, InputType and OutputType. The above properties are used when selecting ap-

propriate algorithms with respect to the given object class, as well as its a priori known

characteristics. In case of recognition of definite objects, a priori known characteristics

are concrete data sets (e.g. color, shape descriptors, etc.) that are used to parameterize

the vision algorithms. The ROVIS methods are controlled via three functions called by

the algorithms executer: run, stop and pause. These three functions modify the Status

attribute of the algorithm. After the object of interest has been detected, its 3D position

is saved in the World Model.

The overall structure of a skill, like AcquireObjectBySCam, can be seen in the flowchart
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Figure 3.10.: Organization of the ROVIS architecture core.
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Figure 3.11.: ROVIS vision algorithms development process.

from Fig. 3.14. The start and end information messages of the skill are written in a log

file for later debugging. Also, at the beginning, an extra process is started to check the

incoming commands to the skill (e.g. stop or pause). This process is terminated at the

end of the structure. The skill can be executed in two ways:

• Normal execution, which includes the actuation of the vision hardware and the

construction of the image processing chain,

• Simulative execution, used by the Sequencer to test task planning capabilities.

Just before the end of the skill, the encountered exceptions are properly handled.

After defining the ROVIS architectural principle, the next task that has to be fulfilled

is the integration of the proposed vision system within the overall control structure of the

service robot, that is the FRIEND assistive robotic platform.

44



3. ROVIS machine vision architecture

ROVIS GUI

CMachineVisionGUIBuilder CMainMachineVisionDialog

1

CMainMachineVisionDialog
«ExternalGeneratedClass»

ALGORITHMS

CBaseAlgorithm

*

OMD_ROVIS_GUI

Page 1 of 1

Figure 3.12.: ROVIS Graphical User Interface implementation and connection to vision
algorithms.
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Figure 3.13.: Architectural design of a skill in ROVIS.

3.4. ROVIS integration in a service robotic system

The ROVIS architecture is used to implement the visual perceptual capabilities of FRIEND,

a service robotic platform designed to assist disabled and elderly people in their daily life

and professional life activities. The system, shown in Figure 3.15, is the result of more

then a decade’s work in the field of service robotics done at The Institute of Automation,

University of Bremen. FRIEND is the 3rd generation of assistive robots designed at the

institute, after FRIEND I [64] and FRIEND II [104], with their vision systems detailed

in Chapter 3.1. The realization of the robotic system involved an interdisciplinary coop-

eration between different fields of research ranging from computer vision and robotics to

neurorehabilitation.

The robotic system enables the disabled users (e.g. patients which are quadriplegic,

have muscle diseases or serious paralysis due to strokes or other diseases with similar

consequences for their all day living independence) to perform a large set of tasks in

daily and professional life self-determined and without any help from other people like

therapists or nursing staff.

The capabilities of FRIEND have been demonstrated in different scenarios where a

large number of consecutive action sequences are performed. These sequences, necessary
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Figure 3.14.: Basic ROVIS skill structure.

to fulfil the demands of the robot system’s user, are semantically described as robot object

handling methods like “pour and serve a drink”, “prepare and serve a meal”, “fetch and

handle a book”. In order to plan such actions, reliable visual perception, given by ROVIS,

is needed to determine the POSE of the objects in the FRIEND environment.

3.4.1. ROVIS hardware components in FRIEND

In FRIEND, the various hardware components that make up the system can be classified

into four parts:

• sensors, required for environment understanding;

• actuators, performing actions requested by the user;

• input-output devices, needed for human-robot interaction;

• computing system where data processing and task planning takes place.

In this section the hardware components relevant to the vision system ROVIS will be

discussed.

Stereo camera system: The main sensor component of FRIEND is the global vision

module, represented by a Bumblebeer 2 stereo camera system [118] used for environ-

ment understanding. The camera is equipped with two 1/3“ Sonyr progressive scan

CCD ICX204 sensors that provide two synchronized 1024x768px RGB color images at a
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Figure 3.15.: 3rd generation of the assistive robot FRIEND.

maximum framerate of 20 Frames Per Second (FPS) and a 4.65µm square pixels. The

imaging sensors have a focal length of 6mm with 43◦ Horizontal Field Of View (HFOV)

and a distance of 120mm between the two lenses. Also, the Bumblebeer 2 camera is pre-

calibrated against distortions and misalignment. The conversion from the analog image

signal to digital images is done through a 12-bit Analog to Digital Converter. Serial com-

munication between the camera and the computing system is implemented using a 6-pin

IEEE-1394a FireWire interface. Various parameters of the stereo camera (e.g. exposure,

white balance, shutter speed, etc.) can be set either to automatic or manual adjustment.

The camera system is mounted on a PTH module behind the user, above its head, and

views the scene in front of the robotic system including the manipulator and the tray

which is mounted on the wheelchair in front of the user. The viewing angle of the camera

can be changed by modifying the gaze orientation of the PTH unit.

On-line recalibration system: One major problem in the FRIEND system design is

the shuddering, or vibration, of the upper part of the wheelchair during operation (ma-

nipulator arm and global vision system). This involves a change in the position of the

camera with respect to the world coordinate system, found at the base of the manipulator

arm. This change can produce grasping errors because of false 3D object reconstruction.

In order to cope with this problem, an extra vision system that supervises the position

of the manipulator’s base with respect to the ground was added. The system consists of

a Sonyr monocamera and a visual pattern, or marker, mounted at the base of the robot

arm. Within this coordinate system only the visual pattern will shudder, being mounted

at the base of the robot arm. The camera is mounted on the lower part of the wheelchair,

thus remaining at a constant parallel position with the ground. The tracked position of

the marker is used on-line to recalibrate the global stereo camera system.
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Camera pan-tilt gaze orientation module: An important actuator used by ROVIS is

the gaze orientation module of the global vision system. This module is composed of a

Schunkr 2-DoF Power Cube servo-electric PTH unit. The covered field of view of the

PTH is 1180◦ and 180◦ in the pan and tilt directions, respectively. For positioning and

velocity control it uses two incremental encoders with a resolution of 2000Inc/Rotation.

The communication between the PTH and the main computing device is performed via

a CAN bus interface.

Processing system: The computing system is represented by a standard PC computer

with 8GB of RAM and two Intel XEONr QuadCores microprocessors, each working at a

speed of 2.33GHz. The high computing power has been chosen so in order for the system to

cope with the large amount of information data that has to be processed, especially from

the vision system and motion planning algorithms of the manipulator. The computer is

mounted at the backside of the wheelchair, behind the user, as can be seen from Fig. 3.15.

3.4.2. Support scenarios

The capabilities of the FRIEND robot are materialized into three support scenarios. From

these scenarios, one deals with activities of daily living and the remaining two with re-

integration of the user into working environments, as described bellow.

ADL – Activities of Daily Living : The ADL scenario enables the user to prepare and

serve meals or beverages. It represents the types of activities that a person performs

in a domestic environment. Besides the robot FRIEND, the elements included here are

typical household objects like refrigerator, microwave oven, bottles, glasses or mealtrays.

The task of the ROVIS architecture is to reliably recognize these typical household objects

for proper path planning of the manipulator arm and appropriate object grasping. For

manipulation reasons during eating, a special mealtray and spoon were designed.

Working at a library service desk : A second support scenario developed for FRIEND

is a professional life scenario where the user is working at a library desk equipped with a

laser scanner for reading IDs of books and customer IDs. The task of the FRIEND user is

to handle outgoing and returned books, as well as other tasks at a library desk. A positive

aspect of the library scenario is that the user has to interact with people, thus making

his recovery and reintegration in professional life easier. In order to successfully achieve

the required tasks, that is books handling, their locations have to be precisely calculated.

Taking into account the variety of books (e.g. different textures, colors and sizes), the

image processing algorithms behind books recognition can rely on no a priori knowledge

except their rectangular shape. Also, the proposed vision system has to recognize the

library desk and its components (e.g. laser scanner for reading the ID of the grasped

book).

Functional check of workpieces : The third support scenario takes place in a rehabil-

itation workshop. Here, the user has to perform quality control tasks. These tasks have

been proven to positively influence the disabled person in the rehabilitation process. Such
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a task is checking of electronic keypads for public phones for malfunctioning. For this

purpose a special workshop desk containing different smart tools has been built. The

keypads are placed into a keypad magazine from which the user can extract only one at

a time by pushing a button which will eject the keypad. The vision task is to detect the

3D position of the electronic keypads and the workshop desk on which the keypads are

mounted. When a keypad is localized, the manipulator can grasp it and move it in front

of the user in order to allow him to perform a visual check. After visual check, the keypad

will be inserted into a special test adapter for verifying its functionality.

In this thesis, the main focus is to reliably determine the POSE of the objects to be

manipulated in the FRIEND scenarios, that is meal-trays, bottles, glasses, books, etc.

3.4.3. Overall robot control architecture

The robust control of a complex robotic platform like FRIEND can only be achieved with

an appropriate control architecture which separates the different levels of processing (e.g.

image processing, manipulator control, task planning etc.) into abstraction layers linked

together by a core module which acts as a system manager. The software architecture

used for controlling the FRIEND robot, presented in Figure 3.16, is entitled MASSiVE

and it represents a distributed control architecture which combines reactive behavior with

classical artificial intelligence based task planning capabilities [63, 61, 62]. MASSiVE is

modeled under the shared control framework, signifying a constant interconnection with

the user of the robot. Such approaches, where the cognitive capabilities of the user

are used to improve the capabilities of the robot, have also been encountered in other

architectures [99, 23].

World Model

Human-machine interface

User interaction

Sequencer
Symbolic

layer

Sub-
Symbolic

layer

Reactive layer

ROVIS

Task Interaction

Sensors Actuators

Other reactive 
operations

Manipulative 
Skills

Figure 3.16.: MASSiVE overall control architecture of the service robot FRIEND.

The MASSiVE architecture interacts with the user through the HMI which operates
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at user interaction level. The HMI is interconnected with the Sequencer, the core of

MASSiVE. The Sequencer plays the role of a Discrete Event Controller (DEC) that plans

sequences of operations by means of predefined tasks knowledge [63]. The user com-

mands are acquired with the help of different input methods, such as speech recognition,

chin control, or BCI [60, 101], and translated further into machine language for inter-

pretation [80]. The processing algorithms that converts a user request into robot actions

resides in the Reactive Layer. Here, the data collected from different sensors, such as

the stereo camera, are processed in order to ”understand the environment”. The data is

further converted into actions by the available actuators, such as the 7-DoF manipulator.

As said before, the sequence of operations needed to perform a specific task is generated

by the Sequencer module which also calls the ROVIS vision methods. Throughout the

functioning of the system, the computed data is shared between the modules with the help

of the World Model. In MASSiVE, the World Model defines the information produced

and consumed by the operations in the Reactive Layer. The software interconnection

between the processing layers is implemented using the Common Object Request Broker

Architecture (CORBA) [102]. During on-line system operation task parameters can be

viewed with the help of a GUI available on a display system mounted on the wheelchair

in front of the user. The vision system acts on the commands sent by the Sequencer

and performs appropriate tasks needed for reliable object recognition and subsequent 3D

reconstruction of the object to be manipulated.

ROVIS is integrated as a reactive module within MASSiVE. As displayed in Fig-

ure 3.16, ROVIS is placed inside the Reactive Layer from where it provides visual in-

formation for the Sequencer which further activates the manipulative skills. ROVIS

communicates with the Sub-Symbolic layer of the World Model, where it outputs the

reconstructed 3D environment. This information is used further by the manipulative op-

erations for path planning and object grasping [73]. On the other hand, for performing

the reconstruction task, ROVIS uses from the World Model necessary information such

as features of an object class needed for object classification.

3.4.4. Functional analysis of workflow

The system functional analysis represents the verification and validation of the developed

vision system. For this purpose, a message-driven approach involving sequence diagrams

is used in the analysis.

In UML language, sequence diagrams are used to graphically represent the functional

flow of information and the behavior of a system. In Figure 3.17, a simplified sequence

diagram of the behavior of ROVIS is shown. This behavior is encountered when during

object recognition and reconstruction. The user of FRIEND starts the process by selecting

a specific support scenario. After, the control is taken by the Sequencer who plans the

necessary sequence of actions needed to fulfill the requested user scenario. After the

list of necessary robotic actions is generated, the control is further given to the ROVIS

architecture for 2D objects recognition and 3D reconstruction. As said before, the first

50



3. ROVIS machine vision architecture

step in the ROVIS image processing chain is the definition of the image ROI. This is

modeled in Figure 3.17 through user interaction and camera gaze control.

For the case of user interaction, the control of object recognition is given to the user

of FRIEND who defines an interest point on the input left camera image, as seen in

Figure 5.2. The algorithm for defining the ROI through user interaction is detailed in

Chapter 5.2. For the second case, camera gaze orientation, the control is given to the

2-DoF PTH unit for changing the Field Of View (FOV) of the stereo camera system.

The FOV change is sequenced by the calculation of the image ROI. In Chapter 5.3 two

algorithms for image ROI definition using camera reorientation are detailed. After the

image ROI is defined, the object recognition methods are applied and the 3D positions of

the objects of interest are calculated and saved in the World Model. Finally, the control of

the process is goes back to the Sequencer component which further calls the manipulative

skills of the 7-DoF manipulator arm.

[Gaze Orientation]opt [Gaze Orientation]

[User Interaction]opt [User Interaction]

User

Interest Point
Definition
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Motion

Planning
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Figure 3.17.: Sequence diagram of ROVIS operations involved in environment understanding.
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One crucial step in the image processing chain from Figure 2.1 is image segmentation.

Its purpose is to reduce the visual information from the input image in order to make it

suitable for further processing. As seen in Figure 1.1, the results of image segmentation

directly influences the performance of object classification and the precision of 3D object

reconstruction. Hence, reliability of image segmentation is a key requirement in robot

vision applications.

Motivation for robust segmentation in robot vision

In this thesis, image segmentation is used to classify and extract 2D object features in

order to reconstruct the 3D Position and Orientation (POSE) of an object. An example

emphasizing the importance of reliability of image segmentation is shown in Figure 4.1,

where the “3D object reconstruction problem” is represented. In Figure 4.1(a), a scene

from the Activities of Daily Living (ADL) scenario of the FRIEND robotic system has been

imaged under artificial and daylight illumination conditions, respectively. The artificial

illuminated scene will be referred to as the reference scene. From this scene, the constant

values of the object thresholding interval Cl (see Equation 2.19) are calculated. For the

sake of clarity, only the left stereo image is shown, original and segmented, respectively.

Figure 4.1(b) represents the segmentation results obtained using Equation 2.21. The

thresholding interval Cl = [35, 65] has been determined by manually segmenting the

reference image. As can be seen, in case of reference artificial illumination, the chosen

Cl interval performs well, but in the second case of daylight illumination, the constant

value of Cl outputs a false segmentation result. This happens because colors varies with

respect to illumination. Although the object can be recognized in both images, reliable

extraction of object feature points, needed for 3D reconstruction, can be made only on a

well segmented image. Hence, in Figure 4.1(c), only feature points obtained from good

segmentation provide an optimal 3D reconstruction. In case of erroneous segmentation

the deviation of the feature points from the ideal values, represented in Figure 4.1 by the

object’s center of mass, corresponds to a deviation in the 3D reconstructed object.

In robot vision, the above example suggests also the importance of quality of image

segmentation over object classification power. In the example, although the object can

be easily classified using powerful state of the art machine learning methods, like Neu-

ral Networks (NN) or Support Vector Machines (SVN) [43], its 3D position can not be

calculated precisely, that is, the algorithms concentrate on the recognition of objects in

2D images without taking into account the need of good object segmentation used for
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Figure 4.1.: 3D object reconstruction principle. (a) Images acquired under artificial and day-
light illumination conditions, respectively. (b) Color segmentation and feature point
extraction using the thresholding interval Cl = [35, 65]. (c) 3D reconstruction of the
segmented objects in (b), respectively.

subsequent object feature point extraction and 3D reconstruction [18].

For robotic object manipulation, proper segmentation is also needed for the extraction

of the geometrical shape of the imaged object. The shape is used for calculating the

optimal object grasping point required by the manipulator arm to plan its movement.

Depending on the characteristics of the object, different segmentation methods are better

suited to extract its shape. In Figure 4.2, the segmentation and feature points extraction

of three objects is illustrated. For uniformly colored items, the segmentation is performed

by grouping together pixels based on their similarity, as for the bottle and glass from

Figure 4.2(a,b). The segmentation output represents blobs of pixels which separates

the object from the background, as explained in Chapter 2.4. If the imaged items are

textured, segmentation based on detecting their boundaries is a better choice. Such

methods evaluate sharp transitions between neighboring pixels in order to emphasize the

object’s edges, as seen in Figure 4.2(c) for the case of a book.

Also, the choice of feature points extraction is strictly related to the nature of the

images item. For example, the optimal feature points of a bottle or a glass are represented

by their top and bottom, as seen in Figure 4.2(a,b). On the other hand, the feature points

of a book are represented by its four corners, as illustrated in Figure 4.2(c).

In this chapter, two techniques for robust image segmentation in robot vision are

proposed. The goal is to cope with variable illumination conditions and scene uncertainty.

The main idea of the approach is to use classical image processing techniques enhanced by

including feedback control at low-level image processing, an idea also tackled previously

in the computer vision community [66, 76, 70]. In contrast to these publications, this
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Figure 4.2.: Feature points extraction based on different segmentation types.

thesis approaches the inclusion of feedback control in image processing from the point

of view of robotic manipulation, where precise 3D reconstruction is crucial for optimal

object grasping. The first method, discussed in Chapter 4.1, is intended to control the

parameters of region based segmentation using quality information measured from the

obtained binary image. The second method, presented in Chapter 4.2, involves adaptation

of parameters of boundary segmentation with the purpose of reliably extracting boundary

object features. The robust segmentation algorithms proposed in this chapter will be used

extensively in the rest of the thesis for implementing the visual perceptual capabilities of

the FRIEND robot.

4.1. Robust region based segmentation

The color based segmentation algorithm presented in this chapter aims at detecting “un-

known” uniformly colored objects in variable illumination conditions. The term unknown

denotes the fact that no a priori knowledge regarding object characteristics (e.g. color,

shape etc.) is used to drive the parameters of image segmentation. This comes from the

fact that the robot operates in complex, cluttered, scenes. The algorithms presented here

will be used in Chapter 5 for defining an object’s ROI and also for recognition of objects

of interest in Chapter 6.

4.1.1. Evaluation of color information

Since the goal of the algorithm presented here is to segment uniformly colored objects,

it makes sense firstly to investigate the nature of color representation. As discussed

in Chapter 2.2, although color images are usually stored under the RGB color model,

this representation is inappropriate for color object recognition, since it contains color

information in all its three channels. In contrast to the RGB representation, a number of

color models have been introduced with the purpose of separating the color, or chromatic,

information from the intensity, or achromatic, information. One such model is the HSI

color space presented in Chapter 2.3. In this model, a pixel is characterized by color

(represented by its hue and saturation) and intensity.
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If a closer look is taken at the color cone from Figure 2.3(b), it can be observed that

saturation is defined as the radial distance from the central axis and takes values between

0 at the center and 255 at the extremities. The value 255 represents the maximum value

of usually used in computer implementations, where gray level pixel information is stored

in an 8bit representation. In other words, saturation represents the purity of a color. A

color is defined by its hue, where hue is an angle with values in the interval [0, 360]. For

S = 0, the color information is undefined, that is, color will be represented as shades of

gray ranging, from black to white as one moves from 0 to 255 along the intensity axis

I. On the other hand, if saturation is varied from 0 to 255 the perceived color changes

from a shade of gray to the most pure color represented by its hue. This phenomenon

can be seen in Figure 4.3 for the case of the red color (H = 0). In Figure 4.3, both the

saturation and intensity values are varied in the interval [0, 255]. When saturation is near,

0 all pixels, even those with different hues, look similar. As saturation increases, they

get separated by their color values. In the human visual system this phenomenon can

be encountered when we look at objects under poor illumination conditions (e.g. a red

glass becomes gray when illuminated only by the moon’s light). Also, even if saturation

is high, a color is close to a gray value if the intensity of the image is low, as can be seen

in Figure 4.3.

0 1
Saturation

0 255
Saturation

255
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y

Figure 4.3.: Saturation (S) and intensity (I) variation in the interval [0, 255] for the case of
H = 0 (red color).

From the above description, the relationships between the hue, saturation and inten-

sity components of an image can be described by the following statements:

• low saturation S decreases the hue H value (if S = 0 then the value of H gets

undefined: S = 0→ H = ∅);

• low intensity I decreases the hue H and saturation S values (if I = 0 then both H

and S values get undefined: I = 0→ H = ∅, S = ∅).

Usually, lower values of saturation and intensity are encountered in images acquired

under poor illumination conditions. Following the above reasoning, color can be used in

a segmentation method only when the values of saturation and intensity are high enough.

Thus, for lower values of S and I a segmentation method based only on intensity values
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should be applied. The automatic switching between the two methods is realized based

on a switching mechanism which uses the S and I values to evaluate the amount of color

information present in the image:

Hev = (1−Kev)
S

Smax
+Kev

I

Imax
, (4.1)

where Smax and Imax represent the maximum value of saturation and intensity, respec-

tively. In most computer implementations Smax = 255 and Imax = 255. The color

evaluation parameter varies in the interval Hev ∈ [0, 1]. The higher the color information

in an image is, the higher the evaluation parameter Hev is. The coefficient Kev ∈ [0, 1]

signifies a scaling factor needed to enforce the importance of each component in the rela-

tion. There are cases when, although a scene is good illuminated, it contains achromatic

objects represented by gray surfaces. It has been discovered that for images with such

objects, the value of saturation decreases, whereas the intensity stays high. Keeping in

mind this fact, the contribution of saturation in Equation 4.1 should be higher than the

one of intensity. For this reason, the value of the scaling factor Kev has been heuristi-

cally set to Kev = 0.32. The switching between intensity and color segmentation is made

according to the switching threshold Tsw as:{
Intensity segmentation if Hev < Tsw

Color segmentation if Hev ≥ Tsw
(4.2)

After a number of trial and error experiments, it has been established that Tsw = 0.3.

Color based segmentation is also referred to as hue-saturation segmentation, since color

is stored in these image planes.

The switching between intensity and color segmentation is graphically shown in Fig-

ure 4.4. Based on the value of Hev either one of the methods may be called. In the

following sections, the two segmentation algorithms, intensity and color based, will be

discussed. Since intensity segmentation requires only one gray level plane, it is simpler

than color segmentation, which needs both the hue and saturation components. For this

reason, the proposed closed-loop intensity segmentation methods will be explained first.

4.1.2. Closed-loop intensity segmentation

The goal of robust intensity segmentation is to segment achromatic objects or images

acquired from poor illuminated scenes. One major drawback of this approach, in com-

parison to color segmentation, is that objects are classified based only on a relative low

number of shades of gray. Although, as said before, in many cases when illumination is

poor, intensity based segmentation is the only valid approach.

The approach used in this thesis to design a robust method for intensity segmentation,

which also sets the guidelines for the robust color based method, is to control the double

thresholding operation from Equation 2.13 in such a way that no a priori information
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Figure 4.4.: Switching between intensity and hue-saturation segmentation.

regarding the gray level values of the object of interest is required. The reason not to

use any a priori information lies on the fact that gray level values vary with respect to

illumination changes, hence, although the method would work fine on predefined, refer-

ence, illumination contitions, it would fail to produce a reliable result when illumination

changes. The principle of closed-loop segmentation, introduced in [83], can be seen in

Figure 4.5 applied to the double thresholding operation. Based on an input image and

on initial thresholding parameters, the segmentation result is analyzed and further, in

a closed-loop manner, automatically adapted to the optimal working point, that is to

the optimal segmentation result. In such a feedback control system, the control signal,

or actuator variable, is a parameter of image segmentation and the controlled variable a

measure of feature extraction quality.
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Figure 4.5.: Closed-loop intensity based segmentation principle.

The motivation for adjusting the threshold operator 2.13 is exemplified in Figure 4.6,

where different results of segmentation of a bottle are shown. As evident, only the correct

choice of object thresholding interval [Tmin, Tmax] = [27, 52] yields a segmented image of

good quality, containing a whole, well segmented object. In contrast, an incorrect choice

of the thresholding interval causes segmentation failure. As shown in Figure 4.6, other

intervals, which lay outside the interval of the object’s pixel values, yield images with seg-
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.6.: Image segmentation corresponding to different thresholding intervals. (a) Gray
level input image. (b) [Tmin, Tmax] = [0, 25], (c) [Tmin, Tmax] = [27, 52], (d)
[Tmin, Tmax] = [60, 85], (e) [Tmin, Tmax] = [165, 190], (f) [Tmin, Tmax] = [195, 220],
(g) [Tmin, Tmax] = [225, 250].

mented background pixels (noise) and without any segmented object pixels, respectively.

As explained in Chapter 2.1, the process of designing a control system for image

processing differs significantly from classical control application, but still exhibits similar

design phases like process studying, decision on controlled and actuator variables, design

of the control configuration and of the controller and finally testing. These phases will be

further detailed for the case of robust intensity segmentation.

Choice of the actuator variable

Taking into account the observations made from Figure 4.6, the purpose of the control

system is to control the thresholding operation 2.13. A suitable actuator variable for

this process is an increment value ui added to the initial intensity thresholding interval

[Tmin, Tmax] in order to drive the segmentation operation to its optimal result. For main-

taining a lower system complexity, the values of the thresholding interval have been linked

together as:

Tmax = Tmin +Kiw, (4.3)

where Kiw is a constant value denoting the intensity thresholding interval width. Having

in mind Equation 4.3, the expression of the actuator variable may be now written as:

[Tmin + ui, Tmax + ui], (4.4)

where ui represents the threshold increment to the initial thresholding value [Tmin, Tmax].

In order to maintain a consistence of the algorithm description, Equation 4.4 can be

rewritten as:

[Tmin + ui, (Tmin +Kiw) + ui]. (4.5)
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By combining the two values of the thresholding interval using Equation 4.3, a singular

actuator variable, ui, is obtained for the proposed segmentation control system.

Choice of the controlled variable

In order to automatically adjust the actuator variable so that the current quality of seg-

mented image is driven to the desired, or optimal, value a controlled variable has to be

defined. The chosen controlled variable has to be appropriate from the control as well

as from the image processing point of view [83]. From the image processing point of

view, a feedback variable must be an appropriate measure of image segmentation quality.

Two basic requirements for control are that it should be possible to calculate the chosen

quality measure easily from the image and the closed-loop should satisfy input-output

controllability conditions. Input-output controllability primarily means that for the se-

lected output (controlled variable) an input (actuator variable) which has a significant

effect on it must exist.

Reliable object recognition and 3D reconstruction can only be achieved with a seg-

mented image of good quality. A binary segmented image is said to be of good quality if

it contains all pixels of the object of interest forming a “full” (unbroken) and well shaped

segmented object region. Bearing in mind the qualitative definition of a segmented im-

age of good quality given above, the quantitative measure of segmented image quality in

Equation 4.6 has been proposed:

Im = −log2p8, I(0) = 0, (4.6)

where p8 is the relative frequency, that is, the estimate of the probability of a segmented

pixel surrounded with 8 segmented pixels in its 8-pixel neighborhood:

p8 =
number of segmented pixels surrounded with 8 segmented pixels

total number of segmented pixels in the image
. (4.7)

Keeping in mind that a well segmented image contains a “full” (without holes) seg-

mented object region, it is evident from Equation 4.7 that a small probability p8 corre-

sponds to a large disorder in a binary segmented image. In this case, a large uncertainty

Im, defined by Equation 4.6, is assigned to the segmented image. Therefore, the goal is

to achieve a segmented image having an uncertainty measure Im as small as possible in

order to get reliable segmentation result.

Input-output controllability

In order to investigate the input-output controllability of the image segmentation system

when considering the thresholding interval increment ui as the input (actuator) vari-

able and the proposed uncertainty measure Im as the output (controlled) variable, the

thresholding of the image from Figure 4.6(a) was done. The initial thresholding interval
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was set to [0, Kiw], where Kiw = 20. To this interval the increment ui was added as in

Equation 4.5. For each segmented image corresponding to the increment ui ∈ [0, 255],

the uncertainty measure Im was calculated. The resulting input-output characteristic is

presented in Figure 4.7 for two different input intensity images. As can be seen, the uncer-

tainty Im is sensitive to the chosen actuator variable across its effective operating range.

Also, it is clear that each input value is mapped to at most one output value and that

it is possible to achieve the minimum of Im, which corresponds to the segmented object

image of reference good quality, by changing the thresholding boundaries. The satisfac-

tion of these prerequisites for successful control action to be performed demonstrates the

pair “threshold increment ui – uncertainty measure Im” as a good “actuator variable –

controlled variable” pair.
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Figure 4.7.: The uncertainty measure Im of segmented pixels vs. intensity threshold increment
ui for two different input intensity images.

The input-output characteristics shown in Figure 4.7 is characterized by a number of

local minimas from which only one represents the desired object of interest. As an exam-

ple, in the diagram, the minimum corresponding to the object and the one representing

the background have been displayed. Based on the above discussion, it can be said that

the original problem, that of finding the optimal object threshold interval that provides
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a segmented object image of good quality, appropriate for subsequent object feature ex-

traction, can be interpreted and converted to the problem of finding the minimas of the

uncertainty Im of the object region in the binary segmented image. Given the proper

effective operating range [ulow, uhigh], with ulow, uhigh ∈ [0, 255], the optimal threshold

increment ui opt can be expressed as:

ui opt = arg min Im(ui). (4.8)

In Chapter 6.1, characteristics like the ones in Figure 4.7 will be used for extracting

different objects present in the imaged scene of the FRIEND robot.

Control structure design

The minimum corresponding to optimal segmentation is calculated using the extremum

seeking method presented in Table 2.1. The input image from which the curve in Fig-

ure 4.7 has been generated contains only one object. The diagram has two local minimas,

representing the object and the background, respectively. Keeping this in mind, it is

important to choose appropriate effective input operating ranges [ulow, uhigh]. Because of

noise in the input data and also for not getting stuck in local minimas, the feedback op-

timization method is not applied directly on the calculated characteristic, but on a curve

smoothed using a moving average filter [45]:

Cj =

i=(m−1)/2∑
i=−(m−1)/2

Xj+i

m
, (4.9)

where C is the smoothed characteristic, X is the input data, j is the index into the input

data and i is the index into the sliding window m.

The reference value of the chosen controlled variable is not explicitly known in the

presented system. However, the selection of an image quality measure whose minimal

value corresponds to the image of good quality has been suggested for the controlled

variable. Hence, the optimal value of the chosen controlled variable is achieved through

feedback optimization using the extremum seeking algorithm from Table 2.1, as shown in

Figure 4.8. Here, in principle, the feedback information on the segmented image quality

is used to choose the optimal value ui opt of the actuator variable ui, that is, to drive the

current segmented image to one with reference optimal quality.

4.1.3. Closed-loop color segmentation

The main disadvantage in using only intensity information for segmentation is the rela-

tively low number of shades of gray that can be used in distinguishing between different

objects and their background. Hence, it may be impossible to differentiate between two
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Figure 4.8.: Closed-loop intensity segmentation control structure.

objects even when they have different colors. This phenomenon occurs when intensity

is the same for different objects. In order to overcome this problem, color information

may be used when its quantity is enough to reliably distinguish between colored objects,

namely Hev ≥ Tsw.

The principle of color segmentation in the HSI color space is similar to intensity based

segmentation, with the difference that, instead of using one gray level plane, two planes

are used to generate the binary segmented image. In the following, a closed-loop color

based segmentation method, derived from the principle of robust intensity segmentation

presented above, is proposed. The use of color in the algorithm denotes the information

extracted from images and not a priori color class information, classically used when

segmenting colored objects.

Choice of the actuator and controlled variables

As before, the first step in developing a closed-loop image processing algorithm is the

selection of the actuator-controlled variables pair. Since in color segmentation two gray

level planes are used, the complexity of the control system increases with the factor two.

If we take a look at Figure 2.3(b), where the HSI color model is represented, it can

be seen that color depends on the hue H and saturation S components. Bearing in mind

that for intensity segmentation the intensity information I was used in calculating the

output binary segmented image, in the current case both H and S are involved in the

segmentation process.

The hue color circle has been depicted separately in Figure 4.9. The color class Cl
of an object is determined by the angle H from the reference red axis of the color circle.

Since a real object might contain pixels with different color values it is more evident to

define an object color class as a set of more hue values. On the color circle from Figure 4.9,

an object color class Cl will be defined as the interval:

Cl = [Tmin, Tmax], (4.10)
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or:

Cl = [Tmin, (Tmin +Khw)], (4.11)

where Khw is a constant angular value representing the width of the object color class

interval. In this thesis Khw = 60. [Tmin, Tmax] is the thresholding interval of the hue image

plane. The goal of the control system for this case is to control the position of the H

angle in order to obtain reliable object segmentation in a large spectrum of illumination

conditions. Since object color values vary with illumination, no a priori knowledge of the

object of interest color class could be used.
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Blue Magenta

S

HKhw

AND = AND = AND =

Hue
segmentation

Saturation
segmentation

Hue
segmentation

Saturation
segmentation

Hue
segmentation

Saturation
segmentation

Figure 4.9.: Definition of an object color class on the hue-saturation components.

As discussed in Chapter 2.3, the saturation component S is involved in color based

segmentation as a mask that rejects the pixels which carry less color information. In

traditional color segmentation, the output color segmented image is calculated as a logical

AND operation between the hue and saturation segmented images, as pointed out in

Equation 2.21. The problem with this traditional approach is that the processing of the

two image planes is done in an open-loop manner and no information regarding the quality

of the binary segmented image is used in improving the segmentation. For obtaining a

reliable segmentation, the length of the S component is controlled, in conjunction with

controlling the H angle. The H angle gives the object color class Cl. S is varied from the

radius of the color circle, 255, to its center. In principle, the goal of the control system is

to determine the values of hue and saturation that provides optimal image segmentation.

This process involves two steps:

• determine the optimal color class Cl;

• for the calculated color class Cl determine the optimal saturation thresholding inter-

val.

The actuator variables involved in the color based segmentation process are similar

to the one in Relation 4.5, with the difference that here we have two variables, one for

hue and one for saturation.

For determining the optimal color class, the hue angle H has to be automatically

adjusted to its optimal value. Similar to intensity based segmentation, this is achieved by
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using an actuator variable defined as the increment value uh added to the initial object

thresholding interval:

[Tmin + uh, (Tmin +Khw) + uh], (4.12)

where uh is an increment value added to the initial color interval [Tmin, Tmax]. In Fig-

ure 4.10, segmentation results for different object color intervals can be seen. The value

of the saturation thresholding interval was manually set to the optimal value of [74, 255].

As can be seen, only one object color interval corresponds to the segmentation result of

good quality.
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Figure 4.10.: Color segmentation results for different object color intervals and constant opti-
mal saturation segmentation. (a) Input image. (b) [Tmin, Tmax] = [21, 81]. (c)
[Tmin, Tmax] = [104, 164]. (d) [Tmin, Tmax] = [258, 381].

The actuator variable for controlling the saturation component is defined as the in-

crement us which represents the distance from the radius (maximum saturation value

Smax = 255) to the center of the color circle:

[Smax − us, Smax], us ∈ [0, Smax]. (4.13)

Color segmentation results for different saturation segmentation intervals can be seen

in Figure 4.11. The hue image segmentation interval was manually set to [104, 164]. As

can be seen, only a combination of optimal segmented hue and saturation images can

provide a good, fully, segmented object.

Since the goal of robust color segmentation is to obtain good segmented objects with

well connected pixels, the feedback variable to be used is the same as for the intensity

case, that is the uncertainty measure Im, defined in Equation 4.6. Starting from Im, the

optimal values uh opt and us opt can be determined.

Input-output controllability

The input-output controllability has been investigated as for the case of intensity segmen-

tation. The initial color angle H was set to 0, representing the red color. This corresponds

to the initial color thresholding interval [Tmin, Tmax] = [0, 60]. Also, the initial saturation

segmentation interval was set to its maximum value [0, 255].
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Figure 4.11.: Color segmentation results for different saturation segmentation intervals and con-
stant optimal hue segmentation. (a) [Tmin, Tmax] = [0, 255]. (b) [Tmin, Tmax] =
[74, 255]. (c) [Tmin, Tmax] = [183, 255].

To the initial hue angle H = 0, the increment value uh was added as in Equation 4.12.

The hue angle was varied in the interval [0, 360]. Further, for each value of uh, the satu-

ration interval was varied in the interval [0, 255]. This was done by adding the increment

us as [255 − us, 255]. The resulting input-output characteristic represents the variation

of the uncertainty measure Im with respect to the hue and saturation variation. In Fig-

ure 4.12(a), the input-output characteristic obtained by varying the object color class

increment uh can be seen. For the sake of description clarity, the saturation variation is

displayed in Figure 4.12(b) only for a number of minimas in the hue characteristic corre-

sponding to green, blue and red objects, respectively. The curves in the diagrams have

been processed using the smoothing filter from Equation 4.9.

The optimal color segmentation parameters, represented by the pair {uh opt, us opt}, are

described by the minimal uncertainty measure Im in the hue and saturation characteristics

simultaneously. Again, as for the case of intensity segmentation, the problem of finding the

optimal segmentation is represented by finding the minimum of the uncertainty measure

Im in both the hue and the saturation curves.

Because of the shape of the characteristic in Figure 4.12(a), which has different local

minimas corresponding to different colored objects present in the input image, the search

for the optimal segmentation parameters is linked to the proper definition of the effective

operating ranges [ulow, uhigh] of the extremum search algorithm from Table 2.1. The case

of the saturation characteristic in Figure 4.12(b) is simpler since the optimal saturation

thresholding parameters correspond to the global minimum, hence the operating range

for this case is [0, 255].

Control structure design

For controlling the color segmentation process, the cascade control structure from Fig-

ure 4.13 has been proposed.

The inner-loop from Figure 4.13 is responsible for finding the optimal value of the hue

thresholding interval uh opt represented by the object color class Cl. On the other hand,

the objective of the outer-loop is to find the optimal value of the saturation threshold
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Figure 4.12.: The uncertainty measure Im of segmented pixels vs. hue angle H (a) and vs. the
saturation threshold increment us corresponding to the minimas of uh representing
green, blue and red objects, respectively (b).

increment us opt.

Both closed-loop structures presented in Figure 4.13 represent feedback optimization

mechanisms like the one illustrated in Figure 4.8 for the case of intensity based segmen-

tation.

The effective operating range [ulow, uhigh] can be manually chosen on a specific color

section of the hue circle, in the interval [0, 360]. Also, as it will be discussed in Chapter 6,

the effective operating range can be automatically determined for the purpose of finding

multiple objects present in the input image.

A pseudo-code description of the proposed closed-loop color based segmentation method

is given in Table 4.1.

In Figure 4.14, the variation of the optimal color segmentation parameters [uh opt, us opt]

over a dataset of images acquired in illumination conditions ranging from 15lx to 1000lx

can be seen. This corresponds to an illumination interval ranging from a dark room

lighted with candles (15lx) to the optimal lighting level of an office (500lx) and above.
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Figure 4.13.: Cascade closed-loop control structure for color segmentation.

Table 4.1.: Pseudo-code of the robust color segmentation algorithm.

Initialize i = 0, j = 0;
for ulow : 1 : uhigh do

1. Threshold the hue image fh(x, y) with thresholding interval [uh, uh +Khw];
2. Store the thresholded image in th(x, y);
for us = 0 : 1 : 255 do

3. Threshold the saturation image fs(x, y) with thresholding interval [us, 255];
4. Store the thresholded image in ts(x, y);
5. Combine the hue and the saturation segmentation results as

t(x, y) = th(x, y) AND ts(x, y);
6. Calculate the uncertainty measure Im(i, j) of the binary image t(x, y); j = j+1;

end for
7. i = i+ 1;

end for
Find min Im(i, j).

The characteristics in Figure 4.14 show the optimal value of color segmentation param-

eters, calculated using the proposed closed-loop method, as illumination varies in the

interval [15, 1000]. The nonlinear variation of the uncertainty measure in Figure 4.14

comes from the fact that the segmentation is influenced not only by the intensity of illu-

mination, but also by the position and type of illuminant. For example, shades can be

produced by positioning the illuminant on one side of the imaged object. In this case the

shades can be erroneously segmented as object pixels.

4.2. Robust boundary based segmentation

The recognition of textured objects, like books, is mainly done through methods that

detect their boundaries, or edges [30]. Such a method is the canny edge detector which
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Figure 4.14.: Variation of hue (a) and saturation (b) threshold increments over a number of
images acquired in various illumination conditions.

aims at classifying as foreground object pixels the ones that lie on the edges of objects.

Pixels are considered as edges if they lie on sharp local changes in the intensity of an image.

The output of segmentation is a binary image where foreground object pixels have the

value 1 (black) and background pixels the value 0 (white), as seen in Figure 4.15(b). One

main drawback of pure, raw, edge segmentation is that often breaks between edge pixels

are encountered. For the case of line edges, a way around this problem is to evaluate the

collinearity of binary edge pixels. This evaluation can be performed using the so-called

hough transform [37] which converts the raw edge pixel data to a parameter space suitable

for collinearity analysis. In order to distinguish between raw edge lines and lines calculated

with the hough transform, the latter will be referred to as hough lines. In Figure 4.15(c),

the gray lines represent the extracted hough lines, whereas the gray circles the extracted

2D object feature points. As convention, the numbering of the feature points is made in

a clockwise manner.

In this chapter a robust, closed-loop, boundary object detection method based on

the canny detector and the hough transform, both explained in Chapter 2.4, is proposed.

The idea of the method is to adjust the parameters of canny and hough transform to
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Figure 4.15.: Boundary feature point extraction. (a) Input image of a book. (b) Edge segmented
image. (c) Hough lines and feature point extraction.

the optimal operational points based on the evaluation of the detected lines in the input

image.

Open-loop object boundary segmentation

In this thesis, boundary segmentation is considered as the combination of raw edge seg-

mentation and hough transform. Edge segmentation is performed using the canny edge

detector [16] applied on the intensity image. Basically, the canny algorithm is performed

through two main steps: filtering of the input intensity image with the derivative of Gaus-

sian of a scale σ and thresholding the filtered image by the so-called hysteresis thresholding.

Gaussian filtering aims at noise reduction where the degree of smoothing is determined

by the value of σ. The binary edge detected image is calculated with the help of low

TL and high TH thresholds, aiming at detecting strong and weak edges, where the weak

edges are included in the output image only if they are connected to strong edges. The

low threshold can be expressed as a function of the high threshold as:

TL = 0.4 · TH . (4.14)

An example of a Canny edge segmented image can be seen in Figure 4.15(b).

One drawback of using only raw edge detection for boundary object extraction is that

very often the obtained contour edges are not connected, that is, they have small breaks

between the edge pixels. This phenomenon happens due to noise in the input image,

non-uniform illumination and other effects that introduce discontinuities in the intensity

image [30]. The hough transform [37] is a method used in linking edge pixels based on

shape. Although any shape can be expressed by the so-called generalized hough transform,

in practice, because of computational expenses, shapes like lines or ellipses are used. In

this thesis, the goal is to extract the lines that bound a book. These lines are calculated

by estimating the collinearity of raw edge pixels. The hough transform maps the binary

edge pixels to the so-called accumulator cells. Initially, the accumulator cells are set to

0. For every foreground pixels that lies on a line, a specific cell of the accumulator is

increased. The higher the number of pixels that lie on a line, the higher the values of the

corresponding accumulator cell is. Since the value of the accumulator entries reflects the
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collinearity for all foreground edge pixels, it is meaningful to threshold it, so to consider

as hough lines only the ones which have an accumulator cell value higher than a specific

hough threshold THG. In Figure 4.15(c), the gray lines represent the detected hough lines.

A crucial requirement for reliable object manipulation using visual information is the

robust extraction of object feature points used for 3D reconstruction. This requirement

is strictly related to the quality of boundary segmentation. A boundary segmented image

is said to be of good quality if the calculated object boundaries lie on its real boundaries.

The extension of the boundary segmentation algorithm presented in here employs the idea

of inclusion of feedback structures at image processing level to control the quality of the

segmented image. The idea behind this approach is to change the parameters of image

ROI segmentation in a closed-loop manner so that the current segmented image is driven

to the one of reference quality independently of external influences.

The values of canny and hough transform thresholds are usually used as constant val-

ues which poses problems in variable illumination conditions. This problem is exemplified

in Figure 4.16, where object feature points of a book are extracted using the constant

boundary segmentation parameters. The parameters are determined in reference artificial

illumination conditions. As can be seen from Figure 4.16, the feature points are reliably

extracted for the case of artificial illumination. When the same constant parameters are

used for recognizing the object in changed illumination (e.g. daylight) the output result

is incorrect. In the next paragraphs, a closed-loop method for automatic adjustment of

these thresholds, as illumination during image acquisition changes, is introduced.

(a) (b)

(c) (d)

Figure 4.16.: Image of the same scene acquired under artificial - 458 lx (a) and daylight - 143
lx (b) illumination conditions. (c) and (d) object feature points extraction using
constant boundary segmentation parameters.
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Feedback control structure and actuator variables

In Figure 4.17 the block diagram of the proposed cascade closed-loop boundary segmen-

tation method is displayed. In the presented system, the reference value of the chosen

controlled variable is not explicitly known, since the goal is to develop a method able

to detect objects independent of their sizes, color, or texture information. The objective

of the control structure from Figure 4.17 is to find the maximum value of the controlled

variable y. This is achieved through a feedback optimization process using an appropriate

extremum seeking algorithm, as will be further explained.
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Figure 4.17.: Cascade control structure for robust boundary object detection.

In closed-loop image processing, actuator variables are those parameters that directly

influence the image processing result. Since the boundary segmentation method used in

ROVIS is composed of the canny edge detector and the hough transform, the actuators

are chosen as the parameters that most strongly influence these operations. The result of

canny edge detection is dependent on the choice of low TL and high TH thresholds. For

the sake of clarity, TL is considered to be a function of TH , as shown in Equation 4.14.

For the rest of this thesis, the canny thresholds will be referred only to TH . On the

other hand, the hough transform is strongly influenced by the value of the accumulator

threshold THG.

The outer-loop from Figure 4.17 is responsible for finding the optimal threshold of the

canny edge detector, according to the feedback variable y. The output binary edge image

represents the input to the inner-loop of the control structure. In Figure 4.18, different

detected hough lines are shown, for different values of canny parameters. The values of the

hough threshold THG is constant. As can be seen, the correct number of lines describing

the object of interest is extracted only for the case of optimal canny threshold (TH = 100).

The other examples yield either a too low (Figure 4.18(b)) or too high (Figure 4.18(c))

number of hough lines.

The goal of the inner-loop is to find the optimal working point of the hough transform

parameters. As described in Chapter 2.5, the hough transform is capable of obtaining real

edges even when the segmented edge is broken, a process also known as edge linking. In

order to emphasize on the correct choice of hough transform threshold THG, in Figure 4.19

different lines detection results are shown for different values of the hough threshold.
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(a) (b) (c)

Figure 4.18.: Lines detection corresponding to THG = 50 and different values of the canny thresh-
old. (a) TH = 100. (b) TH = 240. (c) TH = 20.

Again, as seen from the previous example, only a proper choice regarding the threshold

value can output a reliable number of object lines.

(a) (b) (c)

Figure 4.19.: Lines detection corresponding to TH = 100 and different hough transform thresh-
old. (a) THG = 65. (b) THG = 30. (c) THG = 100.

Choice of the feedback variable

In order to control the TH and THG thresholds, a measure of boundary segmentation

quality has to be defined. This quality measure is to be used as the controlled variable

in the proposed closed-loop system. A good boundary segmented image is one where

the detected hough lines lie on the real object’s edges. The feedback variable y from

Figure 4.17 should be a description of the obtained lines in the image. Since y is a

measure of lines quality dependent on the application, it should describe the lines based

on a contextual model represented by the optimal combination of lines which reliably

describes the shape of an object, here also called reference, or target, model.

In a large number of model-based vision systems [19] an object model refers strictly

to a 3D prototype representation. This approach is relatively rigid and relies on a good

performance of image segmentation for detecting the 3D model. In this thesis, the term

reference model signifies the shape signature of an object in the 2D image plane. The

feedback controlled variable will therefore represent a description of the target object

based upon a set of object features derived from the detected hough lines.

Object boundary detection is used in the Library support scenario of the FRIEND

system for the detection of books (Chapter 6.2), as well as in detecting container objects
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for image ROI definition (Chapter 5.3). A book reference model is represented as a

combination of parallel and perpendicular lines, forming the standard shape of a book.

The construction of the candidate solutions represent a combinatorial expansion of the

angles between detected lines in the input image. The angle of a line, ν, is measured

with respect to the x axis of the 2D image plane, as seen in Figure 4.20. Ideally, between

two parallel lines the difference in their angles should be 0, whereas for perpendicular

lines π/2. Considering the camera’s viewing angle and possible image distortions, the

decision of classifying two lines as parallel or perpendicular has been done by introducing

two offsets. Two lines are considered to be parallel if the difference in their angles with

respect to the x axis is smaller then 12◦, or 0.209rad. Likewise, two lines are considered

perpendicular if the angles difference varies in the small interval [π/2−0.209, π/2+0.209].

(0,0) x

y

1

2
l1

l2

Figure 4.20.: Lines representation for quality measurement.

After grouping lines into parallel pairs, they are tested for perpendicularity. If one

line pair is perpendicular to another one it is considered as a candidate object solution and

added to the candidate solutions vector N#. The quality measure for robust boundary

segmentation can be calculated based on the candidates solutions vectorN#. The equation

of the proposed measure is:

y =


eN/Nmax ·

N#∑
n=1

NO(n)

PROI
, if N ≤ Nmax,

0, if N > Nmax,

(4.15)

where N represents the total number of hough lines, N# the number of candidate solutions

and NO(n) the number of foreground pixels covered by the hough lines of the nth object,

normalized with the perimeter of the image, PROI . Having in mind the computational

burden of the hough transform, the maximum number of lines allowed in an image is set

to a constant value Nmax. The exponential term in Equation 4.15 is introduced in order

to force feature extraction with a minimum amount of hough lines. Hence, y decays to

zero when the number of hough lines increases. In Figure 4.21, the value of the controlled

variable y for different boundary segmentation results can be seen.

As can be seen from Figure 4.21, the higher the value of the quality measure y is,

the better the image segmentation quality is. To investigate the system’s input-output
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(a) (b) (c)

Figure 4.21.: Different values of the feedback variable y for different segmentation results. (a)
Ideally segmented y = 0.5728. (b) Undersegmented y = 0.4821. (c) Oversegmented
y = 0.5183.

controllability when considering the thresholds TH and THG as the actuator variables and

the measure y as controlled variable, boundary segmentation was applied on the image

from Figure D.2(a) (see Appendix D). The value of TH was varied in the interval [0, 255],

whereas the value of THG in the interval [0, 100]. For each combination of thresholds

{TH , THG}, the controlled variable y was measured. The input-output result can be

seen in Figure 4.22. Optimal boundary segmentation corresponds to the combination

of thresholds which maximize the variable y. It can be observed from Figure 4.22 that

different combinations of thresholds yield the same value of the quality measure. This is

because the same optimal feature extraction result can be achieved with different values

of TH and THG.
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Figure 4.22.: The quality measure y vs. canny TH and hough transform THG threshold.

Feedback control design

The block diagram of the proposed control structure for robust boundary segmentation is

illustrated in Figure 4.17. The objective of the control structure is to find the maximum

value of the controlled variable y. This is achieved through a feedback optimization

process using an appropriate extremum seeking algorithm. Since, as said before, optimal
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4. Robust image segmentation for robot vision

feature extraction is achieved for different values of thresholds, the extremum seeking

algorithm stops when the gradient of the surface in Figure 4.22 reaches the value 0.

Feedback optimization on the whole range of canny and hough transform parameter

space requires a high amount of computation power. In order to reduce it, a method for

determining the effective operating ranges of the thresholds has been set. For canny edge

detection, the operating range [uC low, uC high] is determined by examining the amount of

segmented edge pixels, represented as:

Ro2t =
number of segmented edge pixels in image

total number of pixels in image
. (4.16)

The edge segmented image is considered to be noisy if the ratio Ro2t exceeds the heuris-

tically determined value 0.8. Hence, the value of the lowest canny threshold uC low is

represented by the value where Ro2t < 0.8. On the other hand, the highest canny thresh-

old uC high is always the maximum gray level value found in the input intensity image.

The operating ranges of the hough transform are determined from the already cal-

culated operating ranges of the canny edge detector, that is from the uC low and uC high

values. The binary segmented image corresponding to uC low contains the maximum

number of segmented object pixels, hence the maximum number of hough lines. The high

boundary uHG high is calculated in an iterative manner by decreasing the threshold THG
applied to accumulator cells until the number of detected lines is equal or bigger than 4

(N ≥ 4). 4 is the minimum number of lines needed to form an object.

In Table 4.2, a pseudo-code of the proposed feedback optimization algorithm for

boundary segmentation is given. Since both the canny and the hough transform are dis-

crete operations, the feedback optimization process is performed using a step increment

of value 1.

Table 4.2.: Pseudo-code of the robust boundary segmentation algorithm.

Initialize i = 0, j = 0;
for TH = uC low : 1 : uC high do

1. Obtain the canny binary edge detected image and store the result in tC(x, y);
2. Calculate the accumulator array of the hough transform;
for THG = uHG low : 1 : uHG high do

3. Threshold the accumulator array and get the hough lines N ;
4. Combine the obtained hough lines and get the candidate solutions vector N#;
5. Calculate the quality measure y;
6. Store the value of y(i, j) corresponding to the current pair of canny and

hough transform parameters; j = j + 1;
end for
7. i = i+ 1;

end for
find max y(i, j).

The main problem raised by the “hill climbing” algorithm from Table 4.2 is the high
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4. Robust image segmentation for robot vision

computation time required to calculate the optimal values of TH and THG. In order to

overcome this problem, the genetic algorithms optimization structure from Figure 4.23 is

proposed. A brief introduction to genetic algorithms [67] is given in Appendix C. Genetic

algorithms were chosen for finding the optimal values of canny and hough transform

thresholds because they exhibit high optimization speed and low probability to get stuck

in local maximums.

Get [uC low, uC high] 
and [uHG low, uHG high]

Initialize Population

Canny Edge 
Detection

Hough 
Transform Niter ≥ Nterm TH opt, THG opt

TH THG

Calculate y

No

EncodeGet Child 
PopulationDecode

T’H T’HG

Input 
intensity
image

Figure 4.23.: Block diagram of genetic algorithms optimization for robust boundary
segmentation.

First, the effective operating range is calculated, defined by the intervals [uC low, uC high]

for canny and [uHG low, uHG high] for hough transform. Further, the initial population

needed for genetic optimization is selected by randomly choosing different parameter pairs

{TH , THG}. The obtain pair is referred to as individuals of the population, as explained in

Appendix C. For each individual, the boundary quality measure y is calculated. After this

procedure is repeated for the whole population, a new child population is generated based

on the calculated quality measure. The selected individuals are encoded as binary strings

and new individuals are generated by the use of crossover and mutation [67]. After decod-

ing the binary string, the procedure is repeated with the new parameter set (T ′H , T
′
HG).

It has been observed that the proposed method converges to an optimal solution after

an average number of three iterations Niter = 3. Hence, the stopping criteria for the

feedback loop in Figure 4.23 is the maximum iterations number Niter. The output of the

optimization process is the pair of optimal canny and hough thresholds {TH opt, THG opt}.
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5. Image Region of Interest (ROI) definition in

ROVIS

In robot vision, using an image Region of Interest (ROI) in which image processing al-

gorithms are to be applied has a series of advantages. One of them is the reduction of

the scene’s complexity, that is the reduction of the object’s search area from the whole

imaged scene to a smaller region containing the object(s) to be recognized. As explained

in Chapter 3, ROI definition represents in ROVIS a pre-processing stage. Its aim is to

provide as input to the object recognition chain a subarea in the image where the search

for the object(s) of interest takes place.

In this chapter two approaches used for defining the image ROI are presented, each

of them depending on the amount of contextual knowledge information available:

• bottom-up ROI definition, where image-based criteria is used in defining a ROI from

groups of pixels that are likely to belong together;

• top-down ROI definition, which uses a priori scene information learned from exam-

ples.

Following, the computer vision definition of an image ROI will be given. The bottom-

up approach will be explained in the context of the ROVIS architecture, where user

interaction is used for defining interest points in the input image. Further, two top-

down ROI definition methods will be explained together with how knowledge regarding

the imaged scene is integrated in the algorithms. This knowledge comes either from the

detection of containers boundaries, or from the recognition of natural SIFT markers placed

on containers [10]. The definition of a container object has been given in Chapter 3.2.1.

Both approaches presented in this chapter are a core concept of the ROVIS archi-

tecture. The object recognition chain described in Chapter 6 is based on the optimal

detection of the image ROI.

5.1. Definition of the image ROI

Although the meaning of ROI is strictly dependent on the application, a common accepted

definition is, as the name suggests, a part of the image for which the observer of the image

shows interest [17]. The interest region is not only dependent on the image, but also on the

observer itself. In [81], ROIs are classified in two types: hROIs (human identified ROIs)

and aROIs (algorithmically detected ROIs). In human perception, context-dependent
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5. Image Region of Interest (ROI) definition in ROVIS

sequences of eye movements fixate the hROIs. A medium of three eye fixations per

second are generated by a human subject during active looking. These eye fixations are

intercalated by rapid eye jumps, called saccades, during which vision is suppressed. Only a

small set of eye fixations, hROIs, are usually required by the brain to recognize a complex

visual input [81]. The aROIs are generated automatically by image processing algorithms

that usually intend to detect and localize specific features in an image (e.g. color, spacial

frequency, texture information etc.).

From the computer vision point of view, the definition of the image ROI can be derived

from Figure 5.1. For the sake of clarity, only one ROI is assumed to exist in an image at

a specific moment of time. On an input image f(x, y), with its coordinate system located

at the “top-left” corner, the ROI is defined by a vector of four elements: [x, y, w, h]. (x, y)

is the ROI’s 2D image coordinate point, taken as the left-upper point of the ROI. The

other 2 elements of the vector are the ROI’s width w and height h. For the rest of the

thesis, the ROI of an image f(x, y) will be referred to as:

ROI(f |x, y, w, h). (5.1)

x

y

(0, 0)

(x,y)

Image plane

width (w)

he
ig

ht
 (h

)

Figure 5.1.: ROI inside the 2D image plane.

5.2. Bottom-up image ROI definition through user interaction

In bottom-up image processing, information extracted at pixel level is used in building the

image ROI. In the next paragraphs, a method for defining the image ROI for uniformly

colored objects to be manipulated is presented. Within the ROVIS architecture, the

bottom-up approach is sustained by the definition of an interest point in the image,

ptint(x, y). This point is used as a starting position for adjusting the parameters of the

initial ROI to its optimal values, that is, to surround the desired object. For the case of

the FRIEND robot, interest point definition is performed through the Human-Machine

Interface (HMI) component, as explained in Chapter 3. Such a ROI, which bounds only

one object to be manipulated, corresponds to the user command “I want this object”, as

explained in Chapter 3.2.3.
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Stereo Image 
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Interest Point 
Definition

User interaction:
Chin control
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Figure 5.2.: Block diagram of robust ROI definition through user interaction.

In Figure 5.2, the block diagram for ROI definition through the HMI is illustrated.

The starting point of the algorithm is the acquisition of a stereo images pair, followed by

the definition of the interest point. For reducing at maximum the need for user interaction,

the interest point is defined through the HMI only once, on the left image of the stereo

pair, as ptintL(x, y). For the right image, the corresponding interest point ptintR(x, y)

is calculated using epipolar geometry. The result of the calculations provides a stereo

interest point pair for a pair of stereo images:

{ptintL(x, y), ptintR(x, y)}. (5.2)

The points pair in Equation 5.2 is provided as input to the closed-loop ROI definition

algorithm proposed in this chapter. The algorithm calculates the pair of stereo ROIs:

{ROI(fL|x, y, w, h), ROI(fR|x, y, w, h)}. (5.3)

The final ROIs in Equation 5.3, optimally bounds the desired object in both left and

right images, respectively.

Interest point definition

The connection between the user of FRIEND and ROVIS is moderated by the HMI. De-

pending on the motoric capabilities of the user, he/she interacts with the robotic system
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5. Image Region of Interest (ROI) definition in ROVIS

through several input devices, like chin joystick, speech recognition, Brain-Computer In-

terface (BCI) or hand joystick. Using such a device the user can provide commands to the

robot by controlling a cursor on a display monitor. In a similar manner, the controlled

cursor can be used to define the interest point ptintL(x, y). After the interest point is

defined, the proposed closed-loop ROI definition algorithm is used to bound the object of

interest automatically in both stereo images.

One very important aspect of the proposed method is its robustness with respect to

the given image interest point. In order not to constrain the user with a tiring task, as

defining a precise point on the object of interest, the method presented here must function

when the interest point is given not on the object but on its vicinity. This signify that the

algorithm must be robust with respect to ill defined interest points. As will be further seen,

this robustness is achieved through feedback mechanisms included in the image processing

algorithms involved in bottom-up ROI definition.

5.2.1. Problem statement

The goal of the proposed algorithm is to calculate a pair of ROIs that will perfectly

bound the object to be manipulated in the input stereo images pair. The formulation of

the problem and the proposed solution will be described for the case of a single mono

input image, the stereo approach being achieved by applying the algorithm twice, on the

left and right image, respectively. The problem that has to be solved is how to bound the

desired object to be manipulated with a ROI starting from an ill defined interest point,

as plastically represented in Figure 5.3. In Figure 5.3, a uniformly colored, region based

segmented, object is ideally bounded by a ROI.

(x,y)
w

h

ROI bounding the
object of interest

ROIopt(f | x, y, w, h)

Interest points defined 
through user interaction

ptint1(x, y)

ptint2(x, y)

Figure 5.3.: Definition of an optimal image ROI of a segmented object obtained from two interest
points, respectively.

In order to illustrate the image ROI definition problem, in Figure 5.4, the intermediate

steps for defining the optimal ROI for the segmented object in Figure 5.3 have been

displayed. The two presented cases, A and B, correspond to the selection of the interest

points ptint1(x, y) on the object and ptint2(x, y) outside of it, respectively. Starting from

each of the interest points and using an initial ROI0, the algorithm must achieve the
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5. Image Region of Interest (ROI) definition in ROVIS

optimal ROI that will bound the object:

ROI0(f |x0, y0, w0, h0) −→ ROIopt(f |x, y, w, h). (5.4)

ROIopt is defined as the rectangle that bounds the segmented object and has its edges

at a one pixel distance from the object itself.

Step 1 – initial image 
ROI definition Step 2 Step 3

Step 1 – initial image 
ROI definition Step 2 Step 3

A

B

ptint1(x, y)

ptint2(x, y)

ROI0(f | x, y, w, h) Final ROIoptIntermediate ROI

Figure 5.4.: Intermediate steps for defining an object’s image ROI for two different cases of
interest points.

In this thesis, the proposed solution for the image ROI definition problem is the

development of a closed-loop control system that automatically adjusts the parameters

of the current ROI based on segmentation evaluation. In the next paragraphs, such a

closed-loop control system is presented, for the case of uniformly colored objects.

5.2.2. Control structure design

In Figure 5.5, the proposed cascade control system for image ROI parameters adjustment

is presented. Although, the system is designed for the case of a region based segmented

objects, the same concept can be applied for boundary based segmented objects.

The inner-loop of the cascade structure from Figure 5.5 is responsible for robust region

segmentation of the current ROI. This inner-loop is represented by the robust region based

color segmentation method from Chapter 4.1. The choice for this adaptive segmentation

method comes from the fact that the values of optimal segmentation parameters are

changing as the size of the image ROI is adjusted, as will be further explained. Based on
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the segmentation result, the outer-loop automatically adjusts the parameters of the image

ROI. In order to achieve this, the obtained segmentation is evaluated at each iteration

step. The algorithm starts from an initial ROI, as explained below.

Closed-loop
Image ROI

Segmentation

Adjustment of 
Position and Size 

of ROI

ROI
Feature 

Extraction

Image 
ROI 

Definition

Input RGB
image

Initial ROI
ROI0 (f0 | x0, y0, w0, h0)

Figure 5.5.: Principle of cascade closed-loop image ROI definition.

Initial image ROI

The algorithm is initialized with the input image f(x, y) and a predefined ROI imposed

on the interest point ptint(x, y). On the initial ROI, the robust region segmentation

operation is applied. This part of the algorithm plays a crucial role in the success of the

method, since it represents the initial segmentation of the object in the initial ROI. In

Figure 5.6(a), eight initial ROIs of objects to be manipulated, in the Activities of Daily

Living (ADL) scenario of FRIEND, are presented. The robust region segmentation of the

ROIs is presented in Figure 5.6(b). From the eight ROIs in the image, 1, 3, 4, 5 and 7

have their interest point defined on the object, whereas 2, 6 and 8 outside of it, in its

vicinity. As can be seen from Figure 5.6(b), all the segmented ROIs contain as segmented

object pixels a part of the object to be manipulated. This signifies a robustness of the

method with respect to ill interest point definition. As it will be further explained, from

the segmented regions, the final object ROIs will be calculated, respectively.

The initial ROI is defined with constant parameters:

ROI0(f |x = x0, y = y0, w = w0, h = h0), (5.5)

where the reference coordinate (x0, y0) of the ROI is calculated from the user defined

interest point ptint(x, y) and the predefined values of the width w and height h of ROI0:{
x0 = ptint(x)− (w0/2),

y0 = ptint(y)− (h0/2),
(5.6)

where ptint(x) and ptint(y) are the coordinates of the interest point on the x and y axes

of the image plane, respectively.
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(a) (b)

Figure 5.6.: Imaged scene from the FRIEND ADL scenario with different user-defined initial
ROIs (a) and their respective segmentation results (b).

After initial segmentation, the edges of ROI0 are set around the detected object

according to the next two rules:

1 The position of the image ROI edges which intersect the object are left unchanged;

2 The position of the image ROI edges which do not intersect the object are set at a

one pixel distance from it.

The purpose of modifying ROI0 is to adjust the edges of the object’s ROI close to its

boundaries. From these new boundaries, the feedback optimization process of the ROI’s

parameters will start. Feedback optimitation is used in the outer-loop of the cascade

structure from Figure 5.5. The procedure of automatic adjustment of the edges of an

image ROI will be further explained, together with the choice of the actuator – controlled

variable pair for the outer-loop.

Choice of the actuator – controlled variable pair

As explained in Chapter 2.1, the design of a closed-loop control system for image pro-

cessing differs significantly from classical control applications, especially in the choice of

actuator – feedback variables. In this section the characteristics of the outer-loop from

Figure 5.5 will be detailed.

Having in mind that the goal of the proposed algorithm is to optimally bound the

object of interest according to the image ROI segmentation result, a proper choice for

the actuator – controlled variables is the 2D position of the edges of the ROI in the

image plane. In the example from Figure 5.7, the ROI edges are moved in the directions

where the object of interest is found, according to the segmentation result. On one hand,

the positions of the top and right edges are changed towards the top and right image

plane, respectively, since they intersect the segmented object. On the other hand, the

bottom and left edge are translated towards the segmented object, that is to the top and

right, respectively, since they do not intersect the object. An important note is that the
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translation of the edges is given by the segmentation result performed only on the ROI.

EL

ER

ET

EB

Figure 5.7.: 2D translation of ROI edges in the image plane.

In order to adjust the ROI’s parameters vector from Equation 5.1, a mapping from

the original ROI coefficients [x, y, w, h] to the ROI edges from Figure 5.7 was performed:

ROI(f |x, y, w, h) −→ ROI(f |EL, ET , ER, EB). (5.7)

where EL, ET , ER and EB corresponds to the left, top, right and bottom edges of the

ROI, respectively.

The control of the position of an image ROI is achieved by manipulating its edges, that

is, the position of {EL, ET , ER, EB} in the 2D image plane. This position is changed with

the actuator variable ue, defined as an increment added to the current position of the ROI

edges. Since a ROI is represented by four edges, an equal number of closed-loop control

structures has to be implemented, that is, one feedback mechanism for each edge.

The controlled variable for the feedback loop is a measure of quality related to the positions

of the ROI edges in the image plane. This quality measure is obtained by calculating the

number of segmented object pixels touching the edges of the image ROI. Mathematically,

this measure can be modeled as an estimate of probability of the number of object pixels

placed on each edge of the segmented object, respectively:

ρi =
number of segmented pixels on the ith edge

ith edge length
. (5.8)

where ρi represents the probability of the edge i to intersect segmented object pixels.

Following the above reasoning, the optimal value of ROIopt corresponds to ρi = 0, which

is also the reference value for the proposed control system.

Feedback control design

The variable ρi is used in the proposed system as a switching element for readjusting the

position and size of the object ROI. According to the value of ρi, the parameters of the

ROI are changed using the actuator variable ue. Having in mind the definition of the 2D

image plane, given in Figure 5.1, ue has a negative value for EL and ET and positive for
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ER and EB. Given the actuator ue, the relation between the positions of the ROI edges

at two adjacent iteration steps is:

ROIn(f |En
L, E

n
T , E

n
R, E

n
B) = ROIn−1(f |(En−1

L −ueL), (En−1
T −ueT ), (En−1

R +ueR), (En−1
B +ueB)),

(5.9)

where n represents the ROI edges positions at the nth iteration of the algorithm. ueL,

ueT , ueR and ueB corresponds to the increment value added to the edges of the ROI, that

is EL, ET , ER and EB, respectively.

Based of Equation 5.9, the value of ue is calculated as:

uei =

{
K, if ρi > 0,

0, if ρi = 0,
(5.10)

where i ∈ {EL, ET , ER, EB}. K represents an integer defined as the value of the actuator

ue, here chosen as K = 1.

The final structure of the closed-loop control system for bottom-up image ROI definition

is displayed in Figure 5.8. As can be seen, the inner-loop is responsible for robust region

based segmentation of the ROI, at each iteration step of the algorithm. The inner-loop

takes as input, along with the RGB image, the initial ROI0 calculated according to the

defined interest point ptint(x, y). The outer-loop controls the positions of the edges of

the ROI with respect to the number of segmented object pixels lying on the edges of

the ROI. Since a ROI has four edges, four control loops are implemented, one for each

edge. For the control structure from Figure 5.8, the reference value of the outer-loops

corresponds to 0 segmented pixels on the ROI’s edges, that is ρi = 0. The automatic ROI

adjustment process is finished when the edges are positioned at a one pixel distance from

the segmented object in the 2D image plane.

In Figure 5.9, the variation of the optimal hue angle uh can be seen, for the case of three

different uniformly colored objects. This variation was obtained from the robust region

based segmentation method explained in Chapter 4.1. The value of uh was calculated

within the inner-loop of the control structure from Figure 5.8. As said before, the pro-

posed adaptive segmentation method was used because the optimal value of segmentation

parameters are changing with respect to the adjustment of the image ROI. In the example

from Figure 5.9, after a couple of cycles, the hue angle reaches a stable value for all three

objects, that is, the optimal hue angle needed for color segmentation was determined.

The outcome of this bottom-up image ROI definition method can be used directly as

optimal region based segmentation in the ROVIS 2D feature-based object recognition

module from Figure 3.6. This is because the algorithm is based on optimal segmentation

for the definition of the image ROI.
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Figure 5.8.: Closed-loop control structure for robust object ROI definition.
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Figure 5.9.: Variation of the hue angle uh for the case of three uniformly colored objects.

5.2.3. Performance evaluation

Experimental setup

The experimental setup for testing the proposed region based ROI definition algorithm

is composed of four objects to be manipulated from the FRIEND ADL scenario: two

bottles, a mealtray and a spoon. In order to test the algorithm’s robustness with respect

to variable illumination, the ROI definition method was applied on four images acquired

under different illumination conditions. The test images can be as seen in Appendix D,

Figure D.1(a-d). For each object to be manipulated, five interest points were defined,

on and outside the boundaries of the objects. The method was applied on each interest

point for each of the four scenes from Figure D.1(a-d), thus obtaining a number of 20

experiments per object. Figure 5.10 shows an example of different given interest points
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for the case of a bottle (points 1 and 2 are placed on the object, whereas points 3, 4 and

5 outside of it).

Figure 5.10.: Definition of interest points on an object to be manipulated.

In order to test the performance of the proposed approach, the closed-loop ROI definition

method was compared with a traditional open-loop region growing [30] algorithm. The

used region growing method considers as foreground object pixels the neighbors of the seed

pixel (interest point) that have an intensity value in the interval range [px− 10, px+ 10],

where px is the intensity value of the seed pixel. All pixels in the interval [px−10, px+10]

and connected to already segmented pixels are considered foreground. The final ROI is

represented by the bounding box of the segmented object.

The calculated image ROIs from both methods were compared with the ideal ROI, man-

ually obtained. For evaluation purposes, two performance metrics were defined:

• position and size error from the ideal ROI;

• number of missegmented pixels.

Position and size error from the ideal ROI

The position and size error from the ideal ROI represents an estimation of the 2D dis-

placement of the calculated ROI in the image plane. In Figure 5.11, the errors of each

ROI parameter can be seen, that is (x, y) coordinates, width and height. For the first 8

experiments the interest point was placed outside the object to be manipulated, whereas

for the next 12 on it. As can be seen from the diagrams in Figure 5.11, the closed-loop

algorithm is characterized by a constant tendency to zero error in all experiments, in com-

parison to the region growing one. If region growing provides relatively good results for

interest points placed on the objects, for the points lying outside of it the results contain

a large error.

The results from Figure 5.11 have been quantified as the following metric:
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Figure 5.11.: Calculated image ROI position and size error from the ideal ROI.

dp =
1

n

n∑
i=1

√
(xri − xi)2 + (yri − yi)2 + (wri − wi)2 + (hri − hi)2, (5.11)

where n is the number of performed experiments and xr, yr, wr and hr are the manually

determined reference values of the ideal image ROI coordinates, width and height, respec-

tively. The obtained statistical results for the four considered objects to be manipulated

are summarized in Table 5.1.

Number of missegmented pixels

A performance metric similar to the one above is the number of missegmented pixels in

the image ROI. In this case, the calculated values are the number of segmented pixels in

the obtained ROI and the ideal, reference, number of segmented pixels obtained from the

reference ROI. As in the previous metric, the ideal value for the metric is zero. As can be

seen from Figure 5.12, the ROVIS closed-loop results have a constant tendency to zero

error in comparison to the region growing ones.

The quantification of results from Figure 5.12 is performed using Equation 5.12. The

statistical results are shown in Table 5.1.
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Figure 5.12.: Number of missegmented pixels. Dotted line – image ROI definition through region
growing. Solid line – proposed closed-loop image ROI definition.

ap =
1

n

n∑
i=1

(Areari − Areai), (5.12)

where n is the number of performed experiments and Arear is the reference number of

segmented object pixels. As can be seen from Table 5.1, the error values given by dp and ap
for the ROVIS closed-loop approach are much smaller then the ones of the region growing

algorithm, thus emphasizing the robustness of the proposed approach with respect to both

variable illumination conditions and interest point definition.

Table 5.1.: Average error values of the calculated ROIs.

Object Bottle 1 Bottle 2 Handle Spoon

Performance measure dp [px] ap [px] dp [px] ap [px] dp [px] ap [px] dp [px] ap [px]

Region growing 49 5895 62 9049 52 5149 22 1999

Closed-loop 3 320 6 447 7 316 8 364

5.3. Top-down image ROI definition through camera gaze

orientation

The case of top-down image ROI definition takes into account available knowledge re-

garding the imaged scene. In the ROVIS architecture, this knowledge is represented by

the contextual information regarding container objects, that is, they form relatively large

rectangular shapes in the input image. The classification of objects in ROVIS has been

explained in Chapter 3.2.1. Using this information and the robust boundary based seg-

mentation algorithm from Chapter 4.2, the image ROI can be set on the container. In

comparison to the previous case of bottom-up ROI definition, when only one object to be

manipulated was bounded, in case of the top-down approach, the ROI will bound a con-

tainer that can include more objects to be manipulated. It is important to mention that
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the container detection method presented in this chapter is strictly used only for defin-

ing the image ROI. The 3D Position and Orientation (POSE) of the container, needed

for manipulator path planning, is reconstructed using the SIFT based marker detection

algorithm, as explained in Chapter 3.2.2.

The main problem with defining a ROI on container objects is that there are cases when

the container is not present in the Field of View (FOV) of the camera. Also, it can happen

that, although a part of the container is found in the imaged scene, a relatively large part

is again out of the FOV. In order to cope with this problem, a gaze orientation system

for the stereo camera has been proposed. The goal is to center the container object in

the middle of the camera FOV.

The control of the camera’s orientation belongs to the field of active vision, which deals

with the methodologies of changing the parameters of a camera system (e.g. position,

orientation, focus, zoom etc.) for facilitating the processing of visual data [93]. The

adaptation of these parameters is performed in a visual feedback manner. The types

of visual control structures used for this purpose are mainly classified into two distinc-

tive approaches: position-based and image-based. Position-based active vision implies the

3D reconstruction of the imaged objects. This is a relative difficult problem due to the

non-linearities of the transformations and the uncertainties of image processing systems.

On the other hand, for the second case of image-based active vision, the usage of ex-

tracted image features for a direct control of camera parameters provides a way around

the complexity of 3D reconstruction.

The algorithm presented in this chapter involves the automatic adaptation of the POSE

of the camera system for localizing container objects. Once a container is detected and

centered in the middle of the camera’s FOV, the image ROI is set on it. The image-

based active vision approach is used in designing the visual control system, whereas the

boundary based segmentation method described in Chapter 4.2 is used for recognizing

the containers.

5.3.1. Stereo camera head configuration in FRIEND

The global stereo camera used for environment understanding in the ROVIS system is

mounted on a Pan-Tilt Head PTH unit placed on a special rack behind the user, above his

head, as illustrated in Figure 3.15. The PTH is a servo-electric 2-DoF Schunkr robotic

joint which provides to the stereo camera a coverage of a field of view corresponding to

a maximum pan and tilt angles of ±1080◦ (3 rotations) and ±120◦, respectively. The

resolution used for the encoders of the motors has a value of 4 [Arcsec/Inc] for the pan

and 5 [Arcsec/Inc] for the tilt angle. Another representative characteristic of the chosen

PTH is its angular velocity, which has a maximum value of 248 [◦/sec] for pan and 356

[◦/sec] for the tilt.

As explained in Chapter 3.2.2, the POSE of the stereo camera in Cartesian space is related

to the “world” coordinate system W. The world coordinates is the reference coordinate
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system of the FRIEND robot, located at the basis of the manipulator arm. The 3D

virtual environment reconstructed in the World Model of FRIEND is related to this

reference coordinate system. In Figure 5.13, the coordinate system of the stereo camera

is represented with respect to W and a 3D reconstructed object in the environment. Since

a stereo system is used, the camera has two coordinate frames attached, one for the left

camera lens, CL, and one for the right one, CR. The PTH unit is described by the Pan

and Tilt coordinate frames, the first one providing rotation along the y axis, for the pan

angle α, and the second one rotating around the x axis, for the tilt angle β. Knowing

the transformations between the camera and the world and between the object and the

camera, the calculated 3D pose of the imaged object can be related to W. This represents

the calculation of the transformation from the robot’s reference frame and the object,
W
ObjectT , needed for manipulator path planning and object grasping.

{CR}{CL}

{PTHTilt}

{PTHPan}

Stereo camera

xy

z

{W}

Robot base

xy

z {Object}
{Object

CT}

x
y
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{   WT}PTH

{Object
WT}

Figure 5.13.: Configuration of the stereo camera – PTH system and transformation of coordi-
nates between the robot’s world reference, camera lenses, PTH and a 3D recon-
structed object.

One important component for 3D reconstruction is the recalibration process of the stereo

camera when its orientation changes, that is, the recalculation of the projection matrices

QL andQR, as in Equation 2.33. The projection matrices describe the relation between the

camera and the reference coordinate system W. These matrices are composed of two sets

of coefficients, the intrinsic parameters describing the manufacturing characteristics of the

camera (e.g. focal length) and the extrinsic parameters, which describe the coordinate

transformation from the camera to the reference coordinate system, WCLT and W
CR
T . At the

initialization of ROVIS, the projection matrices are calculated via camera calibration, as

illustrated in Figure 3.6. The calibration procedure searches for a marker with a predefined

POSE attached to the base of the FRIEND robot, that is the world coordinates W.

Having in mind that the POSE of the marker is known a priori, the POSE of the stereo

camera system can be calculated with respect to the reference coordinate system. At

this initialization phase, the current pan αcal and tilt βcal angles of the PTH unit, also

called calibration angles, are measured and stored in the World Model. Further, knowing
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the calibration angles, the POSE of the PTHPan coordinate system, to which the stereo

camera is rigidly attached, can be calculated:

W
PTHPan

T =W
CL

T ·CLPTHTilt T (βcal) ·PTHTiltPTHPan
T (αcal), (5.13)

where T represents coordinate transformation. As a convention, the PTH coordinate

system is calculated through the left camera lens CL.

The importance of the POSE of PTHPan is dependent on the recalculation of the pro-

jection matrices when the calibration marker is no longer in the FOV of the camera. In

order to assure precise 3D reconstruction, the projection matrices are updated with every

movement of the PTH unit, using the following relations:
W
CL
T =W

PTHPan
T ·PTHPanPTHTilt

T (α) ·PTHTiltCL
T (β),

W
CR
T =W

PTHPan
T ·PTHPanPTHTilt

T (α) ·PTHTiltCR
T (β),

(5.14)

where α and β represent the current pan and tilt angles, respectively.

5.3.2. Image based visual feedback control

Visual control, or active vision, has been extensively investigated for the purpose of on-

line adaptation of camera parameters [21, 49, 41]. In this thesis, visual control is used for

centering the stereo camera’s FOV on possible container objects present in the support

scenarios of the FRIEND robot. In Figure 5.14, the block diagram of the active vision

structure used to control the orientation of the camera system is shown.

Camera 
Orientation
Controller

Pan-Tilt Head
Unit

u

u

Image 
Acquisition

Interest Point 
Calculation

Interest Point Coordinates

Figure 5.14.: Block diagram of the closed-loop camera gaze orientation system.

In the diagram from Figure 5.14, location of features on the 2D image plane are used in a

feedback manner to adjust the orientation of the camera. Since image features are directly

used in adapting the camera’s orientation, there is no need for stereo image acquisition.

Stereo images are normally used for reconstructing the full POSE of an object. From the

calculated features, the actuator variables for the pan and tilt angles, {uα, uβ}, are to be

determined. The features are used to compute a so-called interest point which is to be

centered in the middle of the camera’s FOV. In this case, the interest point is calculated
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using image processing techniques and should not be confuzed with the interest point

from Chapter 5.2, defined through user interaction. In the following, the interest point

and the design of the visual controller will be explained.

Interest point definition through robust boundary based segmentation

One important part in the visual feedback loop from Figure 5.14 is the calculation of the

interest point ptint(x, y) from which the control error is determined. Keeping in mind

that the purpose of the presented algorithm is to fix the orientation of the camera on

a container, proper image features have to be used for determining the location of the

container in image.

The robust boundary based segmentation algorithm from Chapter 4.2 has been used for

calculating the position of containers in the 2D image plane. The obtained rectangular

shapes are combined with contextual knowledge regarding containers in order to deter-

mine the interest point ptint(x, y). The extra knowledge is represented by the fact that

containers have a relatively large size in the image. ptint(x, y) is defined as the middle

point of the largest detected rectangular object. Also, the size of the image ROI is set

according to the size of the detected container.

In order to adapt the camera’s orientation in a feedback manner, the container object has

to be found in the FOV of the camera. This is needed for determining the interest point

which represents the feedback variable of the visual controller. Before applying the visual

control law, the gaze orientation system works in a so-called candidate search mode where

a camera sweep is performed through the environment. The increment value added at

each sweep step has a value of 5◦. The search is used for detecting the best candidate for

a container object. After the container object has been found, visual feedback control for

camera gaze orientation is activated. The mentioned steps are illustrated in the flowchart

from Figure 5.15.

Container 
Search Visual Control 

of Camera 
OrientationNo Yes

START

END

Figure 5.15.: Flowchart of the camera gaze orientation algorithm in ROVIS.

Modeling and controller tuning

In Figure 5.16, the control error that drives the pan α and tilt β angles of the PTH unit,

calculated in 2D image plane, can be seen.
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Figure 5.16.: Error in 2D image coordinate system between the calculated interest point
ptint(x, y) and the reference image point (xr, yr).

The reference value, to which the interest point has to be driven, is the center of the

camera, (xr, yr). As said before, ptint(x, y) is determined using the robust boundary based

segmentation algorithm from Chapter 4.2. The parameters of the ROI are determined

from the detected container, that is its 2D position, width and height. Based on the

calculated container position, a visual feedback control method can be derived for adapting

the viewing angles of the camera through the PTH system. The values of the actuator

variables for the pan uα and tilt uβ orientations are computed using a PI (Proportional-

Integral) control law in velocity form:

[
uα(k)

uβ(k)

]
=

[
uα(k − 1)

uβ(k − 1)

]
+

[
KPα 0

0 KPβ

]
·
[
ex(k)− ex(k − 1)

ey(k)− ey(k − 1)

]
+

[
KIα 0

0 KIβ

]
·
[
ex(k)

ey(k)

]
,

(5.15)

where k is the discrete time, ex = xr−ptint(x) and ey = yr−ptint(y) represent the control

errors for the pan and tilt components, respectively. KP and KI are the proportional and

integral gains, respectively. The relation between the two gains is given by KI = KP
TI

,

where TI is the integral time constant.

The final block diagram of the visual feedback control system for top-down image ROI

definition, based on the control law from Equation 5.15, is illustrated in Figure 5.17.

At the center of the diagram from Figure 5.17 is the image processing chain used for

calculating the interest point and subsequent the visual control error. For each component

(pan and tilt, respectively), a feedback loop is derived based on the position of ptint(x, y)

along the x axis of the image plane for the case of the pan α angle and, similarly, based

on the position of ptint(x, y) along the y axis, for the case of the tilt β angle.

Since the control error is calculated in image pixels and the input to the pan and tilt

modules represents radians, a conversion between the two measures had to be adopted.

Knowing that the length of a pixel lpx for the used Bumblebeer camera has a value of
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Figure 5.17.: Block diagram of proposed visual control structure for camera orientation and
image ROI definition.

lpx = 0.00465mm and the camera’s focal length is f = 6mm, the FOV covered by a pixel

γpx can be calculated as:

γpx = 2 · arctan
(
lpx
2f

)
. (5.16)

Using Equation 5.16, the covered FOV of a pixel has a value of γpx ≈ 0.0444◦. By

substitution, it turns out that a degree is represented in the FOV of the camera by a

value of 22.52px. Keeping this mapping in mind, the control signals in pixels, ux and

uy, can be easily converted into control signals in radians, uα and uβ. These values are

references to the pan and tilt modules, respectively.

The definition of the visual control law, is followed by the tuning of the visual controller.

The goal of this procedure is to find the proper gains KP and KI that will assure good

system performances, like stability, fast settling time, small steady-state error etc. [71].

In this thesis, the used tuning method is the so-called “trial-and-error” approach where

different values of KP and KI are tried and evaluated. Finally, the values that provide the

best performance results are chosen for on-line implementation in the robotic system. In

Figure 5.18, different step responses of the proposed visual control system are presented.

As can be seen, for a proper choice of proportional and integral gains (KP = 1, KI = 0.6)

the system reaches a steady-state error and an adequate transient response.

5.3.3. Position based visual control in an intelligent environment

An Intelligent Environment is defined as a location (e.g. home, office, hospital etc.)

equipped with different sensors and actuators linked together to form a system that can

perform specific tasks. In the context of robot vision, an intelligent environment is defined

as a location where different markers are placed in the scene in order to provide scene
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Figure 5.18.: Step responses of the proposed visual controller for different combinations of pro-
portional KP and integral KI gains.

related information to a robot.

In the FRIEND system, natural markers are used to enrich the visual information of the

robot. The algorithm used to detect the marker in the 2D image is based on the SIFT [57,

58, 59] feature detector, shortly explained in the introduction of Chapter 4. Details

regarding the structure and implementation of the marker detection algorithm in ROVIS

can be found in [10]. The principle of the method is to use a model image, the natural

marker, to off-line train a classifier. Once the model image has been detected, its POSE

can be reconstructed. Knowing the position of the model image and the 3D geometric

structure of the container, the POSE of the imaged container can be reconstructed.

The centering of the container in the FOV of the camera is performed in a similar manner

as in the case of the feature-based visual control structure presented above. Here, the

feature-base control law is replaced with a position-base one. For the last one, the control

error is calculated in 3D Cartesian space from the obtained POSE of the container and

the orientation of the camera system.

Once the container object has been detected and centered in the FOV of the camera, the

image ROI is calculated from the 3D virtual model of the container. This is done using

the 3D to 2D mapping approach explained in Chapter 3.2. The resulting image region

enclosing the container, in which objects to be manipulated are located, represents the

image ROI.

96



6. Object recognition and 3D reconstruction in

ROVIS

Classification and Position and Orientation (POSE) estimation of objects imaged under

variable illumination conditions is a challenging problem in the computer vision commu-

nity. In ROVIS, object recognition is dependent on the type of segmentation used, region

or boundary based, and by how segmented images are evaluated. The difference between

segmentation evaluation is especially visible in the choice of extracted features used for

object classification and further 3D reconstruction. For example, if for region segmenta-

tion a set of object features are optimal for classification, for boundary segmentation they

might not at all be the proper ones.

Having in mind these statements, the proper segmentation method used for recognizing

an object to be manipulated in ROVIS is selected based on scenario context, as explained

in Chapter 3. Namely, the robot knows what it expects to see (e.g. a bottle or a book). In

this chapter, two types of object recognition methods used in ROVIS are detailed. Both

approaches take into account the type of binary segmented image given as input. The

output of classification represents the object’s class and the 2D object feature points to

be used for 3D reconstruction.

The structure of the object recognition and reconstruction chain used in ROVIS is pre-

sented in Figure 6.1. The overall goal of the components from the illustrated block

diagram is to reliably extract the 3D POSE of objects to be manipulated so that a ro-

bust autonomous manipulator action is accomplished [73]. In ROVIS, container objects

are localized using a SIFT based method, as explained in Chapter 3.2.1. 3D object re-

construction of objects to be manipulated is strongly dependent on the result of object

recognition, that is, on the result of feature extraction and object classification. In the

following, the modules from Figure 6.1 will be detailed, for both types of segmentations,

respectively. Final 3D reconstruction is explained as an independent component which

takes as input 2D object feature points and the determined object class.

6.1. Recognition of region segmented objects

The recognition of region segmented objects deals with analysis of visual data acquired

by grouping pixels with similar characteristics. The objective of the image processing

chain from Figure 6.1 is to parallel process left and right stereo images in order to extract

feature points of objects to be manipulated and used them to reconstruct their POSE.

97



6. Object recognition and 3D reconstruction in ROVIS

Image 
Acquisition

Image Pre-
processing

(ROI definition)

Robust ROI
Segmentation

Feature 
Extraction Classification 3D 

Reconstruction

Bottles

Handles

Optimal hiperplane
for separation

Stereo 
Image 

Acquisition

Pre-
processing Segmentation Feature 

Extraction Classification

Pre-
processing Segmentation Feature 

Extraction Classification

3D 
Recon-

struction

Left
image

Right
image

Image ROI 
Definition

2D Object Recognition

Figure 6.1.: Object recognition and 3D reconstruction chain in ROVIS.

For the considered case of region based segmented objects, the 2D feature points are two,

represented by the object’s top and bottom, or left and right margins, respectively:{
pLi = (xLi, yLi),

pRi = (xRi, yRi), i = 1, 2.
(6.1)

where pLi and pRi represent 2D region based segmented feature points in the left and right

image, respectively. The ROVIS operations involved in the extraction of the 2D feature

points from region based segmentation are detailed below.

6.1.1. Region based image processing operations

Image pre-processing

At this stage, the image ROI is defined with one of the robust methods presented in

Chapter 5. As already mentioned, the choice of method is dependent on scenario context.

The segmentation method applied on the image ROI is based on color or intensity data,

depending on the amount of color information available in the image, as explained in

Chapter 4.1. For obtaining color data, the HSI color model detailed in Chapter 2.3 is used.

The acquired RGB images from the stereo camera are converted at the pre-processing

stage into HSI images which are further fed to the robust segmentation module.

Robust region based segmentation

One important level of the object recognition chain from Figure 6.1 is the robust region

based segmentation component described in Chapter 4.1. Based on the calculated image

ROI, that is bounding only one object to be manipulated or a whole container, two

types of input-output characteristics are obtained. The goal of the proposed closed-loop

segmentation algorithm is to find the minimums of these characteristics, which correspond

to good segmented objects. The minimums are calculated using an appropriate extremum

seeking algorithm, as explained in Appendix A. In the following, for the sake of clarity,

the examples show the variation of the hue angle with respect to the control variable
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from Equation 4.6. The optimal saturation threshold is also calculated for each hue angle

value, as detailed in Chapter 4.1. Based on the image ROI size, the two characteristics

types are:

• Input-output characteristic for a ROI bounding one object : The optimal thresh-

olding increment corresponds to one of the two minimums of the characteristic in

Figure 6.2(a). In this case, one minimum represents the object of interest and the

second minimum the background, or noise. The system is able to distinguish be-

tween the object and the background through a classification method presented later

in this chapter. Since this ROI case corresponds to the bottom-up image ROI defini-

tion algorithm presented in Chapter 5.2, the segmented object is extracted directly

from the result of ROI definition.

• Input-output characteristic for multiple objects : If multiple objects exists in the

image ROI, as the case of the ROI definition algorithm from Chapter 5.3, the input-

output characteristic will contain more minimas, as seen in the curve from Fig-

ure 6.2(b). Based on extremum seeking control, the minimas are determined. Each

minima corresponds to an optimal segmented object, or background (noise). The

objects in the obtained binary images are classified and used for 3D reconstruction.

In both ROI cases presented above, the success of segmentation is related on the proper

choice of the operating ranges ulow and uhigh, as detailed in Chapter 2.1. For characteristics

as the one in Figure 6.2(b), a combination of different operating ranges and extremum

seeking control are used to find the minimas.

Region based feature extraction

As discussed in Chapter 3.2, in ROVIS, features of objects to be manipulated are used

for two purposes:

• classification of the obtained segmented shapes;

• 3D reconstruction of the recognized objects to be manipulated for manipulator arm

path planning and object grasping.

In order to obtain the features of the segmented objects for classification and 3D recon-

struction, their shapes are extracted from binary images using the contour extraction

method from Chapter 2.5.

From the minimas in Figure 6.2, the segmentation results are a set of binary images

B containing segmented objects to be manipulated along with noise viewed as black

segmented pixels in the image:

B = {b0, b1, ..., bn}, (6.2)

where n represents the total number of binary images, related to the total number of

minimas in the respective input-output characteristic. The binary images represent the
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Figure 6.2.: The uncertainty measure Im of segmented pixels vs. threshold increment uh. One
(a) and multiple (b) objects to be manipulated in the image ROI.

input to the feature extraction module. The task of this module is to extract the properties

of the binary shapes found in the ROI of the segmented images. The binary shapes are

modeled as polygonal approximations [30] of the objects contours:

C = {c0, c1, ..., cv}, (6.3)

where v represents the total number of detected contours. The number of shapes is strictly

dependent on the number of objects to be manipulated in the image ROI. For each contour

object features are calculated and stored in the features set as:

Y = {yi|i = 0, ..., d}, (6.4)

where yi is a particular feature and d the total number of extracted features of an object,

as follows:
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• Area – the number of pixels in the extracted contour,

• Bounding box – the smallest rectangle containing the extracted contour,

• Eccentricity – division of the height of the bounding box of the contour to its width,

• Width – the width of the bounding box along each dimension,

• Centroid – the center of mass of the contour,

• Central and invariant moments of the extracted contour.

• Color = uh opt or Intensity level = ui opt, depending on the used segmentation type.

Depending on the amount of color information in the image ROI, intensity or color seg-

mentation is used to extract the objects. Based on the used method, either the color of

an object is saved as a feature, for the case of color segmentation, or its intensity value

for the case of intensity segmentation. Both features are given by the value of the optimal

segmentation parameter described in Chapter 4.1, uh opt or ui opt, respectively.

In order to save computation time, the set of contours C is filtered from noise using the

area, perimeter and height features. It is known that, for objects to be manipulated in

the FRIEND scenarios, these features can reside only on specific intervals. The new set

of filtered contours is defined as:

C ′ = {c′0, c′1, ..., c′w}, C ′ ⊆ C, (6.5)

where w is the number of filtered contours.

Region based object classification

The obtained features from the feature extraction module are further classified at the

object classification stage. In ROVIS, object classification is based on invariant moments.

The invariant moments from Equation 2.26 are calculated for each binary shape and

combined in the Euclidean distance:

dr =
√

(Ir1 − I1)2 + (Ir2 − I2)2 (6.6)

where Ii and Iri, i = 1, 2, are, respectively, measured moments of shape and reference

Hu moments of the object to be manipulated. The reference Hu moments, accessed from

the system’s World Model, are calculated from the so-called ground truth image which is

obtained off-line by manual segmentation of the reference image until a ”full” compact

well shaped object region is obtained.

The extracted object data is used for object classification using the minimum distance

classifier presented in Chapter 2.6. The classifier was trained using a number of sample

images. The sample information was separated in three categories representing sets of

training, validation and classification data.
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6.1.2. Closed-loop improvement of object recognition

Due to different reflections and shadows during image acquisition it may happen that not

all object pixels are segmented as foreground pixels even though the uniformly colored

object is thresholded with the reference thresholding interval. Bearing this in mind and

the definition of a good segmented image object as one which contains “full” and well

shaped segmented object region, it turns out that the binary segmented image has to

be improved to obtain the full, compact, object region. The goal of this improvement

is to extract as precise as possible 2D object feature points used in 3D reconstruction.

In ROVIS, for the case of region based segmented objects, the improvement is achieved

using morphological dilation. The dilation operation increases the area of foreground

pixels while covering the “holes” in the segmented regions. The dilation operator takes

two inputs. One is the binary image to be dilated and the other is the so-called structuring

element. The structuring element is nothing but a matrix consisting of 0’s and 1’s. The

distribution of 1’s determines the shape of the structuring element and the size of the

pixel neighborhood that is considered during image dilation. The structuring element is

shifted over the image and at each image pixel its elements are compared with the set

of the underlying pixels according to some predefined operator. As a result, basically,

a white background pixel turns to a black foreground pixel if there are black pixels in

its neighborhood that are covered by the 1’s of the structuring element. The effect of

“filling” the segmented regions by dilation strongly depends on the shape and size of the

structuring element as well as on the number of performed dilations.

The above presented object recognition chain is extended with an extra closed-loop al-

gorithm for improving its performance. For this purpose, the feedback structure from

Figure 6.3 is proposed, where the first closed-loop is responsible for robust image ROI

segmentation and the second one for the improvement of the obtained segmented ROI.

Image Pre-
processing

(ROI definition)

Robust ROI
Segmentation

Segmented ROI
Improvement –

Dilation

Shape 
Feature 

Extraction
Classification

Closed-loop Image Processing

Euclidean distance dr

Input
image

Figure 6.3.: Improved closed-loop region based object recognition in ROVIS.

Feedback control design

The purpose of the feedback loop from object classification is to “fill” the holes still present

in the segmented object. In ROVIS, this is done by the included dilation closed-loop.

The actuator (input) variable in this closed-loop is the height of the dilation structuring

element. The controlled (output) variable is the shape of the segmented object of interest

expressed by the Hu moments in Equation 2.26, i.e. by the Euclidean distance 6.6. Bearing
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in mind that the Euclidean distance dr measures the closeness of the segmented object Hu

moments to their reference values, it turns out that the desired value of dr is equal to zero.

In order to investigate the input-output controllability of the dilation process, the input-

output characteristic shown in Figure 6.4 is considered. As can be seen, it is possible to

achieve the global minimum of dr when changing the input variable across its operating

range. In real-world applications, when dilating the segmented image corresponding to

the image different from the reference one, the global minimum of dr is not equal but it

is very close to zero, as shown in Figure 6.4(b). Due to the input-output characteristic

having global minimum, the control action based on the extremum searching algorithm,

presented in Appendix A, is suggested, as shown in Figure 6.5.
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Figure 6.4.: Euclidean distance dr vs. height of the dilation structuring element in the case of
reference (a) and alternative (b) image.
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Figure 6.5.: Block diagram of feature extraction closed-loop for region based segmentation
improvement.

From the improved binary images, the 2D feature points from Equation 6.1 can be ex-

tracted and further provided as input to the 3D reconstruction module, as explained later

in this chapter. The gray circles from the output binary image in Figure 6.5 represent
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the 2D feature points of a segmented bottle object.

6.1.3. Performance evaluation of 2D region based object recognition

In order to evaluate the effectiveness of the proposed closed-loop ROVIS object recogni-

tion method, its performance is compared with the performance of a traditional open-loop

segmentation algorithm consisting of thresholding and dilation steps [30]. In contrast to

the closed-loop method, which use feedback information on the processing results to ad-

just the processing parameters at particular processing level, the open-loop method uses

constant reference parameters of both thresholding and dilation operation. These param-

eters are determined off-line, as discussed above, by manual thresholding and dilation of

the reference image. On the other hand, the dilation closed-loop from Figure 6.3 is using

the feedback information on object classification result to adjust the dilation parameter

for improvement of binary image quality and feature extraction.

In order to evaluate the performances of the considered segmentation methods, the Eu-

clidean distance in Equation 6.6 was used as performance criterion. A set of images of

the FRIEND environment in the Activities of Daily Living (ADL) scenario were taken in

different illumination conditions, ranging from 50lx to 900lx. Each captured image was

segmented using the two tested segmentation methods. For each segmented image, the

distance measure 6.6 was calculated after extracting Hu moments as relevant features of

the segmented object region. The results are shown in Figure 6.6. As it can be seen,

the Euclidian distance calculated from segmented images obtained by open-loop segmen-

tation of bright images is almost equal to the desired zero value. This means that both

considered segmentation methods give a good segmentation result for images captured in

lighting conditions similar to the reference ones. This is an expected result even for the

open-loop method since the used constant processing parameters are determined off-line

by manual segmentation of the reference image. However, the performance of open-loop

segmentation, in contrast to the ROVIS method, degrades significantly with the changing

of the illumination conditions. However, as evident from Figure 6.6, even the proposed

closed-loop method gave bad object segmentation results in images captured in very dark

illumination condition. But, this bad result can be considered irrelevant for the robust-

ness evaluation of the proposed method. Namely, applications of the rehabilitation robotic

system FRIEND are considered to be indoor. For that reason the condition of dark il-

lumination can be avoided since the system FRIEND operates always either in the very

bright daily light conditions or in bright artificially light conditions.

6.2. Recognition of boundary segmented objects

Similar to the recognition of region segmented objects, the goal of recognizing boundary

segmented shapes is to extract their 2D feature points by paralelly processing left and

right stereo images, as illustrated in Figure 6.1. In case of boundary segmentation the
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Figure 6.6.: Comparison between open-loop and ROVIS 2D region based object recognition
methods.

number of extracted points are four in each image, defined as:{
pLi = (xLi, yLi),

pRi = (xRi, yRi), i = 1, 2, 3, 4.
(6.7)

where pLi and pRi represent 2D boundary based segmented object feature points in the

left and right image, respectively. In this segmentation case, the four corners of a book.

The boundary based object recognition methods used in the image processing chain from

Figure 6.1 are detailed below.

6.2.1. Boundary based image processing operations

ROI definition

The first step in the object recognition chain from Figure 6.1 is image pre-processing,

mainly represented by the definition of the image ROI. This process is performed through

the top-down ROI definition method presented in Chapter 5.3. The container object,

in this case the library desk, is centered in the camera’s Field of View (FOV) and its

boundaries detected, thus setting the image ROI on it.

Robust boundary segmentation and feature extraction

The detection of object boundaries is implemented using the robust boundary segmenta-

tion algorithm from Chapter 4.2. The objective of the method is to get precise locations

of 2D object feature points needed by 3D reconstruction. These points are given as

intersections of parallel and perpendicular lines that would form book objects. Based

on the presented feedback optimization method, the optimal values of canny and hough

transform are determined. The output of the algorithm is represented by the candidate

solutions vector N# which contains combinations of parallel and perpendicular lines, as

explained in Chapter 4.2. These candidates have to be classified as real book objects or
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noise by the classification method descried in the following.

As in the previous case of region segmented objects, different feature of the boundary

contours are extracted for later use at the 3D object reconstruction stage. The features

represent 2D object properties like its area, bounding box, eccentricity, width, centroid,

central and invariant moments. These feature are extracted based on the object’s contour

calculated using the contour approximation method from Chapter 2.5.

Boundary based object classification

Because of image noise and texture, not all the candidate solutions in vector N# represent

real objects, that is books. The purpose of the classification procedure described here

is to distinguish between spurious candidate solutions, called negatives, and real objects,

named positives. This has been achieved with the help of the Minimum Distance Classifier,

described in Chapter 2.6, and different extracted boundary object features, as follows:

• Relative object area Ar =
Aobj
Af

,

• Eccentricity (object’s width-to-height ratio) Rwh,

• Relative number of object pixels Rpx =
Nf
Nb

,

where Aobj represents the object area bounded with extracted lines and Af the area of the

whole image ROI. Nf and Nb correspond to the number of foreground and background

pixels covered by the Hough lines in the binary segmented image, respectively. The above

mentioned features were combined in two Euclidean distance measures forming the two

positive and negative object classes:

Dpos =
√

(Ar − a1)2 + (Rwh − b1)2 + (Rpx − c1)2, (6.8)

Dneg =
√

(Ar − a2)2 + (Rwh − b2)2 + (Rpx − c2)2, (6.9)

where the coefficients in Equations 6.8 and 6.9 have the values:{
a1 = 0.03; b1 = 0.9; c1 = 1.1;

a2 = 0.01; b2 = 0.7; c2 = 2.5.
(6.10)

The coefficients in Equation 6.10 have been heuristically determined using a number of

50 positive training samples and 50 negative ones. An object is considered positive and

classified as a book if Dpos > Dneg. The intersections of the Hough lines of a detected

object give the four object feature points 2D image. In Figure 6.7 the extraction of object

feature points from recognized books in the FRIEND Library scenario can be seen.

In real world environments, object grasping and manipulation based on visual information

has to cope with object occlusion. One advantage of the Hough transform is that it can

cope with partial occlusion [37], that is, candidate solutions are found although objects
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(a) (b)

Figure 6.7.: Extraction of object feature points (a) Input image. (b) Recognized objects and
their feature points.

overlap each other by a certain degree. In ROVIS, a boundary segmented object, partially

occluded, is considered a positive if it is occluded by less than 30% of its own area. In

Figure 6.8, the result of recognizing two books, one being partially occluded, can be seen.

(a) (b)

Figure 6.8.: Object recognition with partial occlusion. (a) Input image. (b) Recognized objects
and their feature points.

6.2.2. Performance evaluation of 2D boundary based object recognition

As in previous performance evaluations conducted in this thesis, the comparison of the

proposed boundary based object recognition algorithm is made according to its open-

loop counterpart. In open-loop, the values of the parameters of boundary recognition are

constant. The constant values are determined off-line from a reference image acquired

in optimal illumination conditions. For the canny edge detector, the value TH = 101

has been determined by manually obtaining the optimal segmentation result from the

reference image. The threshold values of the hough transform accumulator has been

similarly calculated with the value THG = 62.
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The testing database consisted of a number of 60 sample images acquired in different

illumination conditions ranging from 6lx to 2500lx. Examples of sample input images can

be seen in Appendix D, Figure D.2.

The position of the detected objects was compared with the real position of the objects,

measured with respect to a marker placed in the middle of the library desk. Since the real

world measurements are made in millimeters and the ones from 2D object recognition in

pixels, a conversion between the two had to be set. Keeping in mind that the sample

images represent the same scene in different illumination conditions, a mapping between

pixel distances with respect to millimeters was adopted. The chosen metric maps one

camera pixel to a value of 1.1mm.

The error between the real position of the object with respect to the one calculated via

image processing was set using the following metric:

db =
1

4
·

4∑
i=1

√
(xri − xi)2 + (yri − yi)2, (6.11)

where (xri, yri) represent the real world object coordinates, transformed in pixels, and

(xi, yi) the object coordinates calculated using the open-loop and the proposed ROVIS

boundary based object recognition algorithm, respectively. The points (xi, yi), with i =

1 . . . 4, represent the four detected 2D feature points of the object, that is the four book

corners needed for 3D reconstruction. The extracted points are measured in clockwise

direction.

The diagrams in Figure 6.9 represent the error between real and calculated 2D object

feature points over different illumination conditions. Ideally, the 2D position error should

be zero. As can be seen from the diagrams, the ROVIS error is smaller than the open-loop

one.
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Figure 6.9.: Evaluation of 2D boundary based object recognition. 2D position error, given by
Equation 6.11, between calculated and real positions of objects in the image plane.
(a,b) Two object cases.
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6.3. 3D object reconstruction

The 3D reconstruction module of the image processing chain from Figure 6.1 deals with the

mapping of real world recognized objects into a virtual environment suitable for planning

the motion of the robotic arm [72]. In the overall architecture of FRIEND the Mapped

Virtual Reality (MVR) system is used for such a task. Along with the recognized objects,

a model of the robotic system is also present in the virtual reality world. As explained

in Chapter 3.2.2, the calculated 3D positions of objects are placed in MVR according

to the considered “world” coordinate system W, represented in FRIEND by the basis of

the robotic arm. MVR includes an algorithm for calculating distances between objects.

Using this algorithm the optimal kinematic configuration of the manipulator joints can

be obtained and the motion of the arm planned. The MVR system is also used as a

safety feature during the motion of the manipulator when the path of the arm is checked

in real-time for collisions. In order to obtain such real-time computation, the objects are

represented in the virtual space with three basic forms: sphere, cuboid and cylinder. A

more complex object can be obtained by combinations of the three basic forms [72].

The characteristics of the 3D objects in MVR, that is spheres, cuboids and cylinders,

are calculated from the extracted 2D object features. The 2D feature points used to

reconstruct an object, defined in Equations 6.1 and 6.7, are obtained after classifying the

object’s primitive shape (e.g. bottle, glass, meal-tray, book etc.). The primitive shapes

of the objects are stored in the World Model of the system. As an example, the feature

points needed for reconstructing a bottle are its top and bottom points. Similar, for a book

object, its four detected corners. In order to use the 2D feature points for 3D modeling,

their 3D position has to be reconstructed. This reconstruction is performed using feature

points from the left and right stereo images and the constraint of epipolar geometry [34].

The complete ROVIS procedure for 3D reconstruction of a point is detailed below.

Using reconstructed 3D feature points and 2D object features obtained at feature extrac-

tion level (e.g. object height and width, are, centroid, moments etc.), the 3D model and

POSE of an object can be calculated and saved in the MVR [106]. In 3D Cartesian space,

the position of an object is given by its attached reference frame, defined in homogeneous

coordinates as:

O = (x, y, z, 1), (6.12)

where x, y and z represent the object’s 3D position O along the three axes of the Cartesian

space. The object’s reference frame O is calculated using the reconstructed 3D feature

points. For a particular 3D point P , the reconstruction procedure is as follows. The

relationship between a 3D P and its perspective 2D image projections (pL, pR) is given

as: {
pL = QL · P,
pR = QR · P,

(6.13)
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where where pL and pR represent 2D image feature point coordinates in left and right

stereo images, respectively. QL and QR are the left and right camera projection matrices

determined during ROVIS initialization at the Camera Calibration stage, as seen in Fig-

ure 3.6. QL and QR are defined in Equation 2.33 as the product of the intrinsic and the

extrinsic camera parameters.

The 3D orientation of an object is given by the Euler angles which express the orientation

of the attached object reference frame along the x, y and z axes:
Φ = arctan

(
w31

w32

)
,

Θ = arccos(w33),

Ψ = −arctan
(
w13

w23

)
,

(6.14)

where Φ, Θ and Ψ give the object’s orientation along the x, y and z axes, respectively. The

coefficients wij from Equation 6.14 represent values of the object’s rotation matrix [34]

formed using the scalar component of each unit vector along the Cartesian axes:

Rot =

w11 w12 w13

w21 w22 w23

w31 w32 w33

 . (6.15)

In Equation 6.15, each column represent unit vectors along x, y and z, respectively.

After the model of an object is calculated and saved, the manipulative skills can plan

the movement of the manipulator and also determine the optimal grasping point of the

reconstructed object.

In Figure 6.10, three examples of typical scenes from the FRIEND’s ADL scenario can be

seen. Figure 6.10(a) represents the MVR model of the FRIEND system and two recon-

structed objects placed on its tray. In Figure 6.10(b,c) the interaction of FRIEND with

two reconstructed container objects, a fridge and a microwave can be seen, respectively

(a) (b) (c)

Figure 6.10.: Reconstructions of objects of interest in the ADL support scenario of FRIEND.
(a) Objects to be manipulated placed on the system’s tray in front of the robot.
(b,c) Manipulation of objects placed in different containers.
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6.4. Performance evaluation of final 3D object reconstruction

The ultimate goal of the ROVIS system is reliable 3D reconstruction of objects. This

reconstruction should assure correct 3D modeling of the FRIEND environment for the

purpose of collision free path planning [73]. Therefore, the evaluation of the ROVIS

effectiveness is done through the comparison of manually measured and automatically

calculated 3D features of different objects to be manipulated, like bottles, mealtrays or

books. Two different methods are used for the automatic calculation of the 3D features:

3D reconstruction based on the ROVIS system and 3D reconstruction based on a tradi-

tional open-loop system, with no included feedbacks at image processing level. In contrast

to ROVIS, which uses feedback information to adjust image processing parameters, the

open-loop method uses constant parameters. These parameters are determined offline

by manually applying the image processing operations to the object image captured in

reference illumination condition.

3D reconstruction in FRIEND ADL scenario

A scene from the FRIEND working scenario “serve a drink”, shown in Figure D.1, was

imaged in different illumination conditions ranging from 15lx to 570lx. This range of

illumination corresponds to a variation of the light intensity from a dark room lighted

with candles (15lx) to the lighting level of an office according to the European law UNI

EN 12464 (500lx). Each captured image was processed using the two tested methods.

The object feature points were extracted from each resulting segmented image and sub-

sequently the 3D object coordinates were calculated and compared to the real measured

3D locations in order to calculate coordinates errors Xe, Ye and Ze. Also the width of

the mealtray handle and the heights of the bottles were estimated based on extracted

right and left end feature points, that is based on extracted top neck and bottom feature

points, and compared to the real mealtray handle width, as error We, and, real bottle

heights, as the error He, respectively. The comparison results are shown in Figures 6.11

and 6.12. The statistical measures of achieved error in experiments performed in different

illumination conditions are given in Table 6.1.

Table 6.1.: Statistical results of open-loop vs. the ROVIS object recognition and 3D reconstruc-
tion approach for the ADL scenario.

Open-loop ROVIS

Xe [m] Ye [m] Ze [m] We or He [m] Xe [m] Ye [m] Ze [m] We or He [m]

Max error 0.1397 0.0391 0.2357 0.1130 0.0049 0.0086 0.0029 0.0341
Mean 0.0331 0.0083 0.0121 0.0359 0.0024 0.0051 0.0017 0.0051
Std. dev. 0.0146 0.0071 0.0001 0.0282 0.0016 0.0021 0.0001 0.0044

As can be seen, the 3D object features calculated using the proposed vision architecture

only differs slightly from the real coordinates over the whole considered illumination range,

thus demonstrating the robustness of ROVIS. However, the 3D object features calculated
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Figure 6.11.: Evaluation of 3D reconstruction. Difference between the real 3D object features
and 3D features calculated from images resulting from the proposed ROVIS ar-
chitecture and from the traditional open-loop processing chain. Case of mealtray
object.

from the images resulting from the open-loop method, which uses constant parameters,

significantly differs from the real coordinates for a number of illumination conditions which

differ from reference illumination of 200lx. This indicates the importance of using feedback

information on current results to adapt the image processing parameters to different

environmental conditions. The image processing results are influenced not only by the

intensity of illumination, but also by the position of the illuminant. This phenomenon can

be observed in the sharp peeks from the diagrams from Figure 6.12. When the position

of the illuminant was changed, the error of open-loop image processing results increased.

3D reconstruction in FRIEND Library scenario

The evaluation of final 3D reconstruction for the case of the Library scenario was per-

formed in a similar manner as on the ADL case presented above, taking into consideration

the relevant object feature points of books and the illumination interval [15lx, 1200lx].

Having into account the 3D shape of a book, that of a cuboid object, the object reference

frame taken into consideration for 3D reconstruction is the middle point of the book, that

is, the intersection of the book’s major with minor axis. Once this point is successfully
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calculated, the 3D reconstruction of the book can be made using its extracted width

and height. Since the books are found on a flat table, parallel to the ground, only the

orientation along the Z axis, that is the Ψ angle from Equation 6.14, was measured.

The final results for reconstructing books object 3D feature points can be seen in Fig-

ure 6.13, for the case of two books. As it can be seen from the diagrams and the statistical

results from Table 6.2, in comparison to open-loop processing, the obtained ROVIS POSEs

of books are precise enough for reliable object manipulation. As for the case of the ADL

scenario, the calculated values of the objects poses are under a tolerance error which

makes them reliable for visual guided grasping. The sharp transitions in Figure 6.13, for

the case of the open-loop approach, are due to the nonlinearity of image processing. Using

constant processing parameters, only for a small change in illumination, the position error

of a book can increase considerably. This phenomenon is also illustrated in Figure 4.16,

where the extraction of 2D feature points from open-loop boundary segmentation has

large error when illumination changes.

Table 6.2.: Statistical results of open-loop vs. the ROVIS object recognition and 3D reconstruc-
tion approach for the case of the Library scenario.

Open-loop ROVIS

Xe [m] Ye [m] Ze [m] Ψe [◦] Xe [m] Ye [m] Ze [m] Ψe [◦]

Max error 0.6294 0.2513 0.7881 34.2198 0.0127 0.0134 0.0069 6.3774
Mean 0.1291 0.1202 0.2493 14.9300 0.0101 0.0054 0.0038 4.6119
Standard deviation 0.0360 0.0229 0.0437 8.1207 0.0043 0.0045 0.0011 2.1551
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Figure 6.12.: Evaluation of 3D reconstruction. (a,c,e,g) Blue bottle object. (b,d,f,h) Green
bottle object.
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Figure 6.13.: Evaluation of 3D reconstruction. (a,c,e,g) Book one. (b,d,f,h) Book two.
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7. Conclusions and outlook

In this thesis the novel vision system ROVIS for service robotics has been presented.

The purpose of the robot vision architecture is to precisely reconstruct objects to be

manipulated by a dexterous robotic arm. The precision of object detection plays a crucial

role in the success of object manipulation. The core concepts of ROVIS are represented

by the automatic calculation of an image ROI, where vision algorithms are applied, and

inclusion of feedback mechanisms within image processing operations, as well as between

various components of ROVIS. The goal of this inclusion has as purpose the improvement

of the overall robustness of the robot vision system.

A still open problem in the robot vision community is robustness of vision algorithms

against external influences, like variable illumination conditions and cluttered scenes. In

ROVIS, this was achieved through the implementation of various feedback mechanisms

at image processing levels. The objective of feedback is to automatically adjust the pa-

rameters of image processing methods in order to calculate their optimal working values

according to current working conditions, that is current illumination. The principle of

feedback was applied in Chapter 4 for the development of two robust image segmentation

methods, region and boundary based, used as basic blocks for image ROI definition meth-

ods in Chapter 5 and the object recognition and 3D reconstruction chain from Chapter 6.

The proposed closed-loop algorithms have been tested against their traditional open-loop

counterparts. At the end of Chapter 6, the effectiveness of ROVIS has been demonstrated

by an overall system test performed as a comparison between ROVIS and traditional

open-loop 3D reconstruction.

The objects found in typical service robotics scenes, where ROVIS is used, were classified

into object classes representing containers and objects to be manipulated. This classi-

fication plays an important role in the overall structure of the system since contextual

knowledge is used in different amounts at different stages of processing. The image ROI

definition concept in ROVIS is based on how humans visualize scenes, namely concen-

trating their attention on several interest regions in the environment. Combining this

knowledge with the defined object classes, in Chapter 5 two approaches for closed-loop

image ROI definition have been presented. The two ROI definition cases are developed

around the so-called “bottom-up – top-down” framework. The first case, bottom-up,

treats the definition of a ROI starting from an ill-defined user interest point in the input

image with the objective of bounding the desired object of interest only. The second case,

top-down, uses contextual knowledge regarding the imaged scene and the present objects

to build an image ROI on containers found in the environment. On the calculated image

ROI, the robust object recognition and 3D reconstruction chain from Chapter 6 is applied.
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7. Conclusions and outlook

Depending on the class of the object that has to be grasped and handled by the manipu-

lator, two approaches for recognizing and reconstructing objects to be manipulated have

been set, that is for region and boundary segmented objects, respectively.

The ROVIS system presented in this thesis, along with the proposed robust image pro-

cessing methods developed within, is intended to work as a basis platform for service

robotic vision. From the hardware point of view, improvement of 3D object reconstruc-

tion can be achieved by incorporating in ROVIS range sensing, acquired using a 3D-ToF

(Time-of-Flight) camera. The processing results from such a camera, which avoids the

stereo correspondence problem, can be fusioned with data available from the global stereo

camera, thus obtaining a better virtual picture of the robot’s environment. Since the goal

of ROVIS is reliable object reconstruction for the purpose of manipulator motion plan-

ning and object grasping, the inclusion of a so-called “eye-in-hand” camera mounted on

the end effector of the manipulator arm can improve vision tasks, such as local object

detection. The coordination between the global stereo and the “eye-in-hand” camera can

be implemented in a visual servoing manner which may dynamically, on-line, readjust the

motion of the arm with respect to changes in the imaged scene.

The ROVIS platform stands also as a basis for implementing a cognitive vision system

for service robots. As discussed in the introduction, in recent years biologically motivated

computer vision has become popular among vision and robotics scientists. ROVIS can

be extended beyond its current capabilities through the inclusion of such structures. The

advantages that could be gained are represented by a better adaptation of the vision

system to new working environments and capabilities to learn new scenes from their

context.

Further investigation in control for image processing applications represents also an ex-

tension of the work from this thesis, where feedback mechanisms have been successfully

designed and tested at different levels of image processing.
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A. Extremum seeking control

The basis of extremum seeking control was set at the beginning of the 1920s [11], with

further valuable contributions added in the 1960s. This control method found its way in

a variety of control applications governed by highly nonlinear plants [53, 54]. Recently,

stability analysis of this control method was investigated in [50].

In Figure A.1(a) the block diagram of the extremum seeking control method is presented.
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Figure A.1.: Principle of extremum seeking control. (a) Block diagram. (b) Example cases of
the extremum seeking mechanism.

The equations describing the functioning of the method are basically an integrator:

dx

dt
= Kε, (A.1)

where ε = ±1 and K is a constant; a differentiator:

g =
dy

dt
(A.2)

and a logic circuitry subsystem which implements the function:

L =

{
change the sign of ε if g > 0,

keep the sign of ε if g < 0.
(A.3)

The mechanism behind extremum seeking control is depicted in Figure A.1(b), where four

cases are distinguished:
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A. Extremum seeking control

• Case a :
dx

dt

∣∣∣∣
t−
> 0 AND

dy

dt

∣∣∣∣
t−
< 0, (A.4)

where the horizontal component is increasing and the vertical one is decreasing, that

is the vector a describes the movement of the working point towards the optimal

point from its left side. In this case the controller must keep the sign of the horizontal

variation, i.e. dx
dt

∣∣
t+

= K.

• Case b:
dx

dt

∣∣∣∣
t−
< 0 AND

dy

dt

∣∣∣∣
t−
> 0, (A.5)

where vector b moves away from the optimal point, since the horizontal component

is decreasing and the vertical one is increasing. The logic circuitry must change the

sign of the of the horizontal variation, i.e. dx
dt

∣∣
t+

= K.

• Case c:
dx

dt

∣∣∣∣
t−
> 0 AND

dy

dt

∣∣∣∣
t−
> 0, (A.6)

where both components of vector c move away from the optimal point. In this case

the controller must change the sign of the horizontal variation, i.e. dx
dt

∣∣
t+

= −K.

• Case d :
dx

dt

∣∣∣∣
t−
< 0 AND

dy

dt

∣∣∣∣
t−
< 0, (A.7)

where both the horizontal and vertical components of vector d are decreasing, that

is they are moving towards the optimal point. Here, the logic circuitry must keep

the sign of the horizontal variation, i.e. dx
dt

∣∣
t+

= −K.

Having in mind that dy
dx

= dy
dt
/dx
dt

, Equations A.4 to A.7 can be reduced to:

dx

dt

∣∣∣∣
t+

= K if
dy

dt

∣∣∣∣
t−
< 0, (A.8)

dx

dt

∣∣∣∣
t+

= −K if
dy

dt

∣∣∣∣
t−
> 0. (A.9)

Furthermore, Equations A.8 and A.9 can be written as:

dx

dt
= −K · sign

(
dy

dx

)
. (A.10)

The extremum seeking algorithm measures the sign of dy
dt

, whereas the resulting dynamics

are governed by dy
dx

. The extremum dy
dx

= 0 of the curve in Figure A.1(b) corresponds to

the equilibrium point dx
dt

= 0.
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B. Universal Modeling Language

The birth of UML dates back to 1997 when it was standardized by the Object Manage-

ment Group (OMG) consortium [117]. At the center of UML are nine types of modeling

diagrams from which five are used in this thesis:

• Use Case Diagrams : shows the functionality provided by a system in terms of actors,

their goals represented as use cases, and any dependencies among those use cases;

• Class Diagrams : describes the structure of a system by showing the system’s classes,

their attributes, and the relationships among the classes;

• Sequence Diagrams : shows how objects communicate with each other in terms of a

sequence of messages; also indicates the lifespans of objects relative to those mes-

sages;

• Statechart Diagrams : standardized notation to describe many systems, from com-

puter programs to business processes;

• Activity Diagrams : represents the business and operational step-by-step workflows

of components in a system; an activity diagram shows the overall flow of control.

Over the past years UML has been extended with several other tools for coping with

new problems suited for the UML standard. One such extension is the System Modeling

Language (SysML), a tool used by systems engineers to specify and structure systems [35].
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C. Genetic algorithms optimization

Genetic algorithms, or GA, is a search technique used in computing to find exact or

approximate solutions to optimization and search problems [116]. GA are categorized as

global search heuristics methods, belonging to the class of evolutionary algorithms that

use techniques inspired by evolutionary biology such as inheritance, mutation, selection,

and crossover.

The basic structure of an evolutionary algorithm is shown in Figure C.1. At first, an Initial

Population of possible solutions is selected at random from the search space. The values

of the objective functions for each of these individuals or genotypes of the population are

calculated and, based on this, a fitness value is assigned to each individual. A selection

process filters out the individuals with bad fitness values and allows the fitter members to

enter the next stage of the algorithm, the reproduction stage. In this phase, offspring is

generated by varying or combining the genotypes of the selected individuals and integrated

into the population. The procedure is repeated iteratively, until the termination criterion

is met. Common termination criterias are:

• a solution has been found that satisfies a minimum fitness value;

• a fixed number of generations has been reached;

• manual inspection.

Initial Population

Create an initial 
population of random 

individuals

Evaluation

Compute objective 
values of the solution 

candidates

Fitness Assignment

Use the objective 
values to determine 

fitness values

Reproduction

Create new individuals 
by crossover and 

mutation

Selection

Select the fittest 
individuals for 
reproduction

Figure C.1.: Basic structure of evolutionary algorithms.

Genetic algorithms represent a subclass of evolutionary algorithms, where the elements

of the search space are encoded as binary strings or arrays of other elementary types. For

this reason, they are also referred to as chromosomes. In the reproduction phase of the
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C. Genetic algorithms optimization

GA, offspring is generated by the means of crossover and mutation. Thereby, crossover

is used to generate the child chromosomes. When performing single-point crossover, both

parental chromosomes are split at a randomly selected crossover point. Subsequently,

one or two child genotypes are generated by swapping the upper and lower parts of the

parental chromosomes. Mutation is used to preserve the diversity of a population by

introducing a small chance of changing an individual. If the individuals are encoded as

binary strings, this can be achieved by randomly toggling one of the bits.
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D. Sample images from FRIEND support

scenarios

(a) (b)

(c) (d)

Figure D.1.: Images of the same FRIEND ADL scenario scene acquired in different illumination
confitions. (a) 590 lx. (b) 328 lx. (c) 225 lx. (d) 137 lx.
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D. Sample images from FRIEND support scenarios

(a) (b)

(c) (d)

Figure D.2.: Images from the same FRIEND Library scenario scene acquired in different illumi-
nation confitions. (a) 481 lx. (b) 218 lx. (c) 455 lx. (d) 179 lx.

134



E. List of abbreviations

2D Two dimensional

3D Three dimensional

ADL Activities of Daily Living

ASIC Application-Specific Integrated Circuit

BCI Brain-Computer Interface

CCD Charged Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CORBA Common Object Request Broker Architecture

DEC Discrete Event Controller

DoF Degrees of Freedom

DoG Difference of Gaussian

DSP Digital Signal Processor

FRIEND Functional Robot with dexterous arm and user-frIENdly interface

for Disabled people

FOV Field of View

FPGA Field-Programmable Gate Array

FPS Frames Per Second

GUI Graphical User Interface

HFOV Horizontal Field of View

HMI Human-Machine Interface

HSI Hue-Saturation-Intensity color space

MASSiVE Multi-Layer Architecture for Semi-Autonomous Service-Robots with

Verified Task Execution

MVR Mapped Virtual Reality

OMG Object Management Group

P Proportional controller

PI Proportional-Integral controller

POSE Position and Orientation

PTH Pan-Tilt Head

RGB Red-Green-Blue color space

ROI Region Of Interest in image

ROVIS RObust machine VIsion for Service robotics

SIFT Scale-Invariant Feature Transform

ToF Time of Flight

UML Universal Modeling Language
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F. List of symbols

A(i, j) hough transform accumulator cell

B binary images vector

C extracted objects contours vector

Cl object color class

dr Euclidean distance

E region of interest edge

f(x, y) digital image

Hev amount of color information

I1...7 invariant moments

Im uncertainty measure

l hough transform edge

p8 estimate of the probability of a segmented pixel surrounded

with 8 segmented pixels in its 8-pixel neighborhood

ptint(x, y) image interest point

ROI(f |x, y, w, h) image region of interest

TL low canny threshold

TH high canny threshold

THG hough transform accumulator threshold

[Tmin, Tmax] object thresholding interval

Topt optimal threshold

t(x, y) thresholded binary image

u actuator variable

uopt optimal value of actuator variable

(x, y) pixel coordinates in an image

(x, y, z) object coordinates in cartesian 3D space

Y extracted object features vector

y controlled variable

α pan angle

β tilt angle

∆ν difference between hough transform angles

ηpq object central moments of order (p+ q)

µpq object moments of order (p+ q)

ρi probability of the ROI edge Ei to intersect object pixels
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