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Abstract-In this paper, a method for approximating an object’s 

surface defined by 2.5D data is presented. The goal is to 

determine a compact volume which may be subjected to 

manipulation actions under a proper grasp planning. The object 

volume is obtained based on a union of parameterized geometric 

shapes, also known as superquadrics. In order to reduce over-

segmentations and also the number of fitting combinations, the 

object space is defined as a 3D bounding Region of Interest 

(ROI). Further, via voxel decomposition, the ROI is decomposed 

in more meaningful smaller ROIs that can capture a large 

number of features from the object of interest. By using a fixed 

size voxel grid, the process can be slowed down for the cases of 

large objects. A boosting speedup of the process is proposed 

through dynamically adjusting the sides of the voxels for each 

object. Finally, a method for voxels merging is proposed. Each of 

the newly created ROIs, related to a particular region of the 

object, will be hosting a superquadric model which optimally 

estimates the considered surface. 

Index Terms–Superquadrics, surface estimation, space 

decomposition, robot vision, service robotics. 

 

I. INTRODUCTION 

Perception and scene understanding, although a trivial 

process for humans, is currently stable in robots only under 

carefully controlled conditions. Many human actions are 

driven by the subconscious without the need to think, whereas 

a robot must plan and analyze every intuitive action. In an 

ordinary service robotics scenario, for successfully 

completing a grasping task, several analytical issues have to 

be solved, such as the accurate computation of the object’s 

position and orientation (pose) with respect to the robotic 

platform, followed by a safe path planning that drives the 

robot to a nearby location which enables grasping 

capabilities. To complete the manipulation task, a-priori 

knowledge regarding the geometry of the object of interest is 

required in order to fulfill a proper grasp.  

The a-priori knowledge is usually represented by a 3D 

Point Distribution Model (PDM) of the initial query object. 

After the object is recognized and replaced with this PDM 3D 

model, various techniques, such as visual servoing, are 

employed for manipulation, according to a predefined metric 

[1], [2]. The lack of a-priori knowledge hence creates one 

important challenge in service robotics. This issue is 

encounter when the geometry of a novel object cannot be 

found in the available database or is too particular. In case of 

a service robot operating in an unstructured environment, it is 

impractically to design and implement an exhaustive database 

that can cope with all encountered entities. For this case, an 

approach that uses no other a priori information outside the 

perceived scene has to be considered. In literature, several 

approaches that try to cope with these issues are described in 

[3], [4], [5]. Some of the techniques try to recover the object’s 

convex hull based on a sequence of images (shape from 

silhouettes) as the robot drives around the object [3]. This 

approach needs however the precise pose of the reconstructed 

object which must be provided beforehand. Another 

drawback is the large number of images and the fact that the 

approach requires images from around the entire perimeter of 

the object.  

For a proper object grasping action, it is not needed to fully 

reconstruct the 3D hull of the considered object. This can be 

overcome by finding the contact points which allow an easy 

and safe manipulation. In these sense, by approximating the 

query object with a generic geometric volume or shape, a 

rough 3D representation can be obtained. Because of their 

simplicity and flexibility, the superquadrics are a very good 

candidate for this job. Defined by a simple formula, 

superquadric models can resemble many shapes like 

elipsoids, spheres, cylinders and even cuboids. They were 

first introduced by Barr in [17] and they quickly became a 

popular geometric modeling tool.  

In [6], [7], individual superquadrics were used to model 

different objects in an unstructured scene. This method of 

estimating a surface is very efficient when the grasp deals 

with regular shaped objects. In case of more complex entities, 

such as statues or animals, one single approximation is not 

enough to find the least required number of grasps points [9]. 

However, for this case, superquadrics are still a good 

approach since the surface can be estimated through a 

collection of different generic shapes. In [8], the authors used 

multiple-superquadrics models for the purpose of grasping, 

but limited the manipulation capabilities to a structured planar 

environment. On the other hand, in [10], a new model for 

representing an unorganized object PDM is described. The 

PDM’s set of points is described with a union of 

superellipsoids, firstly segmenting the object and then model 

the shape through a region growing approach and a series of 

split and merge operations. All the above algorithms require 

as input for the modeling process a dense 3D point 

representation of the object. Since a service robot usually 

perceives the environment from only one visual perspective, 

the object recognition and 3D reconstruction process has to 

rely only on 2.5D (2D and depth) representations. An attempt 



to combine 2.5D data and superquadrics was proposed in [2]. 

This paper presents a fast and robust technique for estimating 

a surface through multiple superquadric approximations. The 

entire surface of the object is divided in more meaningful 

sub-regions, each of which will be the host of an individual 

superquadric shape.  

The rest of the paper is organized as follows. In Section II, 

a method of perceiving the environment together with the 

segmentation and initial 3D Region of Interest (ROI) 

extraction is proposed. The implicit surface formulation and 

the 3D query decomposition are presented in Section III. The 

testing setup and evaluation results are given in Section IV, 

before conclusions and outlook. 

II. ENVIRONMENT SENSING 

In the ideal grasping situation, the robot should determine 

the object of interest, compute the optimal path to reach it and 

finally find the best grasping points that can safely 

manipulate the object. The overview of a processing chain for 

a real grasp situation is presented in Fig. 1. The volumetric 

property of the grasp object is determined using a 

superquadric based surface estimation principle. The grasp 

objective is achieved through six main steps. First, the scene 

is perceived using a stereo vision camera. In the next step, a 

color based segmentation process is used to identify the 

object which needs to be manipulated closely followed by the 

third step characterized by the computation of a framework 

on which the reconstruction process will take place. The 

fourth step objective is to break the perceived 2.5D object 

representation in more meaningful regular sub-parts. Next, in 

each sub-part a separate supercuadric model is fitted. In the 

end, grasp points are determined as intersection points 

between the 2.5D representation and superquadric shape. 

A. Robotic sensing capability 

The field of depth perception in robotics is mainly 

dominated by stereo-camera systems (Point Grey’s 

Bumblebee
®
)  [13], structured light sensors (e.g. MS 

Kinect
®
), Time of Flight (ToF) cameras (e.g. Mesa

®
) [11] and 

laser scanners (e.g. Sick
®
)  [12]. 

 Each of the mentioned perception approach comes with 

additional advantages and shortcomings. The ToF [11] 

camera exploits the speed of light in order to determine the 

relative structure of a scene. By measuring the time needed 

by a light ray to reach a particular surface, the distance 

between the camera sensor and that surface can be estimated. 

Although the principle produces a precise and dense 3D 

representation of the environment, it has as main drawback 

the large errors obtained when used in outdoor applications. 

This phenomenon takes place when the sensor interferes with 

natural light. Structured light based cameras (e.g. Kinect) use 

projected light patterns to estimate depth. The observation of 

a pattern is different based on the distance to the object they 

are projected on. On the other hand, the laser sensor copes 

very well in most outdoor scenarios. It also obtains good 

marks in the area of sensibility and sampling rate. Its main 

drawbacks are the large size and high energy consumption. 

One of the most used and investigated imaging mechanism 

in robotics is the stereo-camera. Such a system was also used 

for the experimental results discussed in section IV. 

Concerning the stereo-vision principle, the 3D information is 

obtained by comparing the scene information from two 

slightly different perspectives. Focusing on a particular 

feature, the relative distance between the positions of the 

same feature in the two images can be used as a measure of 

depth between the image sensor and the considered feature. 

Since there is no actually relation (in terms of coordinate 

system) between the camera sensor and the scene, a pre-

calibration step has to be considered [13]. The purpose of this 

step is to determine the intrinsic and the extrinsic parameters 

of the camera. The first parameters characterize a series of 

built-in values such as focal length , optical centers ( ) 

of sensors, aspect ratio and skew constant. On the other hand, 

the extrinsic parameters contain the transformation needed to 

describe the pose of the camera related to different coordinate 

systems. The transformation is obtained based on the rotation 

and translation operators [ , ]. Since the depth estimation is 

achieved through the stereo configuration of two camera 

sensors, the pose of the second camera is actually the same as 

the first one but translated on the  axis with a certain 

quantum, known as baseline. A larger distance between 

camera sensors will provide good depth perception for distant 

objects, whereas a small baseline will give a good perception 

of objects closer to the sensor.  

Before extracting any 3D information from a scene, several 

pre-processing steps have to be considered. Since the process 

of depth perception is based on projections, one important 

issue is that the observed images are purely projection [15]. 

This problem can be solved by removing the distortions in 

each image. Further, before comparing the features from 

stereo images we have to ensure that both images are on a 

common plane and have a standard coordinate system. This 

transformation is calculated through image rectification [14]. 

The goal of depth estimation is to compute a so-called 

disparity map , in the form of a 2D image. The 

resolution of the image is the same as the input RGB ones. 

Each grey level intensity in the disparity image corresponds 

to a disparity  computed as the difference between the 

coordinate of the same features (projected point ) in the 

stereo image: 

, (1) 

 

Fig. 1. Processing chain of the proposed volumetric object estimation approach. 



where  and  are the coordinate of a pixel along the  axis 

in the left  and right  images, respectively. One of the most 

popular algorithms for computing the disparity map is the 

Block Matching approach [16]. In the following, depth 

information will be referred to as point cloud. 

B. 3D object query formulation 

Before actually fit a superquadric shape into the scene we 

have to know the exact pose of the object which surface is to 

be approximated, followed by the implicit shape modeling 

approach that approximates the 3D shape of the object [17]. 

The optimal superquadric shape computation will be 

described in Section III. The pose of a superquadric shape 

and some additional parameters such as height, width and 

depth can be estimated based on a query region defined 

around the segmented object. This is actually a bounding box 

that roughly defines the object in the 2D domain. Having 

pointed out the approximate 2D region and based on the 

imaged scene (represented as a point cloud of 3D points 

reprojected from the disparity map) a 3D bounding ROI can 

be calculated. This 3D region is defined as a query for the 

superquadric estimation technique, that is, “Given a 3D point 

cloud representation of an object of interest, which 

superquadric shapes optimally describe the considered object 

area?”. 

All the 3D points that don’t lie inside the 3D bounding ROI 

are rejected from the imaged point cloud since they do not 

capture any information related to the considered object. The 

height and width of the 3D ROI can be easily determined by 

reprojecting in the 3D scene its 2D corresponding 

coordinates. These reprojected points can actually describe 

only a planar surface. Since the scene is viewed only from 

one perspective, behind the planar object of interest no 3D 

points can be seen. Having this in mind, it is obvious that the 

highest number of 3D points belong to the 3D object. This 

assumption is valid only if the occlusion of the object is less 

than half of the bounding ROI. Under this presumption, the 

depth (thickness) of the bounding box can be estimated 

through a statistical analysis of the distribution of the point 

cloud along the  axis, but only for the crop area defined by 

the planar bounding ROI. Fig. 2 describes the reprojection of 

a 2D ROI into the 3D virtual environment using the above 

principle.  

The point distribution analysis which determines the actual 

thickness of the query is performed on the disparity map 

histogram related to the 2D region of interest. Instead of 

searching for the highest number of points with the same 

disparity intensity, we try to find the highest cluster of points 

which have an appropriate intensity. This operation defines a 

certain aperture for each cluster. The higher number of 

connected points from a certain aperture is considered to 

represent the query object. The aperture defines the depth 

difference between the front and the back faces of the 3D 

bounding ROI, respectively. In this way, a 3D query region 

which contains a point cloud representation of the object 

whose surface is to be estimated is obtained. This approach 

reduces drastically the possible fitting combination of the 

superquadric into the considered surface. 

III. SUPER-QUADRIC BASED OBJECT SURFACE ESTIMATION 

One goal in a successfully handling operation is finding 

optimal 3D gasping points. For this purpose it is not actually 

needed to accurately reconstruct the object’s surface. By 

fitting a series of superquadric models inside the query 

region, a rough surface estimation can be obtained. Thanks 

the implicit representation of the PDM models, we can 

determine which 3D points from the object point cloud lays 

on the superquadrics surfaces and use them to manipulate the 

object. 

A. Implicit superquadric representation 
A 3D surface can be obtained by the spherical product of 

two 2D curves [17]. In this way, by crossing a half circle in 

the plane orthogonal to the axes with a full circle in the 

( ) plane, a 3D sphere can be obtained. Analogous to this 

approach, a super-ellipse (in the 2D domain) can be obtained 

based on the follow equation: 

,  (2) 

where,  and  represent the two semi-axes of the ellipse,  

and  are the coordinates of the point laying on the ellipse 

and is the squareness factor. Based on this approach, 

superquadrics resemble many geometric shapes such as 

cylinders, spindles, octahedral, cubes etc.  

In the 3D space, a generic superquadric model can be 

defined as [17]: 

 

 (3) 

 

where, ,  and  are the three semi-axes of the ellipse, 

and  are the two squareness factors and  is a 

point laying on the super-ellipse. Next, a function , as the 

 

 

 

(a) (b) (c) 

Fig. 2. 3D Reprojection of a crop area defined for a certain imaged object. (a) 2D query formulation. (b) 3D histogram of the corresponding 2D cropped 
region.  (c) 3D bounding box estimation of the initial 2D query. 

 



one in (4), also known as an inside-outside function, is used 

to determine if a point  lies inside or outside the 

superquadric region. If the result of  is < 1, the point  is 

inside the 3D shape, whereas if  implies that  is on 

the surface of the superquadric and if   is greater than 0, 

then the point is outside the considered geometric model. 

 

 (4) 

 

The major advantage of superquadrics is that through only 

eleven parameters a large variety of geometric shapes can be 

obtained. However, since in a real scene the pose (rotation 

and translation) is not in a general form, six of them describe 

the pose of the model, that is, via three Euler angles for 

rotation and three values for the translation. The actual 

modeling process of a superquadric shape is achieved only 

with the help of five parameters.  

The first three, ,  and  are used to describe the global 

features related to the size of the shape (height, width, and 

depth), while the last two parameters and  define the 

curvature of the superquadric edges (squareness). A higher 

value defined for and  specifies a more convex shape, 

whereas lower values will generate a heavy non-convex 

model. For optimal shape representation, the values of these 

parameters should lie in the interval .
 

B. Fitting superquadric models on 3D data points 

Given a set  of 3D data points, that is, a point cloud 

estimation of the real object, the challenge is to determine the 

parameters of the superquadric that optimally fits it into the 

respective 3D data. From a total of 11 parameters, three of 

them are easy to determine if we consider the center of the 3D 

bounding ROI as the mass center of superquadric. This 

assumption is correct since the bounding ROI was statistically 

positioned to represent only the point cloud of the object. 

The rotation of the superquadric is obtained also 

statistically through Principal Component Analysis (PCA)  

[18]. The goal of PCA is to determine the optimal 

orientation for the considered superquadric model. This angle 

reduces the parameter space of the superquadric with another 

3 parameters, leaving undefined only five parameters from a 

total of 11. 

Since one perspective of the object is enough to establish 

the height and the width, parameters ,  and 
 

are 

determined by finding the top and the bottom, respectively 

the left most side and the right most side of the 3D data point 

concerning each bounding ROI. The depth semi-axe  

cannot be determined at this point because of the lack of 

information regarding the backside of the object. In the end, 

only three parameters are left for estimation, namely two 

squareness factors ,  and one semi-axis . As in [19], a 

least squares fitting method is used to determine these last 

parameters. Particularly, the method tries to determine which 

parameters combination will generate the best object fit. This 

optimal fit is associated with a low global distortion which is 

minimized thought the following equation: 

 

,  (5) 

 

where  is the distance between the superquadric 

surface and a 3D data point. To avoid false approximations 

for the case when the points set is not closed to the 

superquadric surface but some of them still approximate it 

correctly, a special coefficient  is considered [19]. 

In order to make the fitting process time efficient, the 

distance between points is estimated with an approximation 

based on the implicit form of the superquadric and not by the 

standard Euclidian distance: 

 

,  (6) 

 

where  represents the superquadric parameters and  

are 3D PDM point coordinates. In the end, the mean 

distortion  per point given is by: 

 

.  (7) 

 

In order to minimize , a non-linear regression method has 

to be considered [20]. In this way, the remaining three 

parameters can be efficiently determined leading to an 

optimal fit of a superquadric shape onto the input 3D dataset. 

C. 3D target decomposition 

Let us suppose that the object which surface we want to 

approximate is a tomato situated on a flat surface. Generally 

speaking, a tomato has a spherical shape which surface can be 

then estimated through a spherical superquadric with the 

parameters  and . In 

service robotics, this approximation through one single 

superquadric may not be enough for many household items 

which have more complex shapes. For example, a glass can 

be easily estimated by a single cylindrical model, whereas a 

cup, because of its handle, must be constructed from multiple 

models. 

Within the initial 3D bounding ROI, only one superquadric, 

which must be globally optimized using all 3D points from 

the box, can be fitted. We propose a decomposition of the 

initial 3D bounding ROI into more meaningful sub-regions, 

each containing a relevant density of 3D points. Inside of 

each sub-bounding ROI, a separate superquadric can be 

optimally fitted, leading to a more accurate object 

approximation. 

The decomposition process starts by generating an 

unsteady voxel grid inside the initial 3D bounding box. In 

order to capture more information from the scene, the 

resolution of the grid is not set to a fixed value, which, for the 

case of large objects, can be to complex and time consuming, 

while for small objects the voxelization can miss important 

features. Instead, the grid sides are dynamically chosen 

through percents of the side of the initial bounding ROI. In 

this way, a voxel can have different side lengths for the 

width, height and depth. For example, a book has after the 

decomposition process 22 grid voxels describing the width, 

31 for height and 10 for depth, although the real dimensions 



of the book is 220 mm by 300 mm by 15 mm. Fig. 3 

describes a voxel grid defined for a cup. 

Next, al voxels inside the object bounding ROI are labeled. 

A voxel is considered valid if it contains 3D point 

information inside. The voxels with no 3D points inside are 

further rejected. In order to avoid sparse or false voxels 

(voxels containing very few points inside), an additional 

threshold value is considered during the labeling process. The 

exact number of 3D points inside each voxel is not relevant if 

it is greater than the above mentioned threshold value. In this 

way, regions with low 3D information (caused by bad 

illumination or lack of texture) are not discriminated by high 

point density agglomeration. 

Based on this rough object definition, the next goal is to 

establish a series of connection between voxels. In order to 

capture as much information as possible the appearance of 

each voxel cluster will be represented by a rectangular prism. 

In some situations, a more complex voxel merge process can 

generate fewer regions but with the risk of losing many 

important features from the object. Actually, the objective is 

to generate as much sub-regions as possible that can capture 

even smaller object characteristics. Although the clustering 

approach generates only rectangular volumes, after the 

optimized fitting stage, a smooth surface is obtained. 

 

 

 

Fig. 3. 3D shape voxelization. 

 

Since in the 3D ROI the only depth information is the one 

describing the entire object, each of the clusters will inherit 

this generic depth, allowing the actual fit process to establish 

the real depth of each region. Because the initial 3D bounding 

ROI is centered onto the object, all the new regions mass 

centers are related to the same depth. 

The clustering process is applied as follows. Because of the 

single input perspective of the object, the voxels are scanned 

only in the 2D domain. By checking the label of each 4-

neighboring voxel, spatial dependences are obtained. The 

proposed pseudo–code algorithm is described in Fig. 4. 

The method scans the voxels in the same way as for the 2D 

domain, that is, from top-left to bottom-right. The third 

dimension representing the depth is at this point omitted. In 

this approach, the voxel cropping process can occur in only 

two directions. The scan searches in each direction only for 

connected valid voxels. If a discontinuity along a certain axis 

(  or ) is found, the side of the rectangular prism ends in the 

point where the discontinuity starts. When a valid voxel is 

checked, the first action is to determine if the left or above 

neighbor is valid. If this is the case, the voxel is skipped since 

it is obvious that it is a part of another rectangular prism. The 

final result of this process is a lower number of overlapping 

rectangular prisms. Each parsed prisms gets a parsing flag. 

After an initial fusion search, all the voxel have the flag on. 

Additional valid voxels, which will be also kept for 

representing the object, will be detected by using the same 

algorithm but applied to unparsed voxels. 

In the end, a series of different rectangular prisms driven by 

the 3D information extracted from the scene are obtained. 

Each of these prisms will host a particular superquadric 

model. As a whole, the superquadrics describe an 

approximation of the initial query model. 

Having defined an implicit surface parameterization for the 

object of interest, the next step is to determine the points that 

can ensure a proper grasp action. Since the superquadrics can 

roughly approximate a surface, not all the points from the 

implicit surface can be used for this process. In order to find 

only good points, a filtering approach is considered. The filter 

takes into consideration only the 3D points, belonging to the  

query object, which verify (4). In this way, only the 3D points 

which are located on the surface of the superquadrics will be 

kept. The grasp planning and the analysis of the manipulation 

capabilities are performed using the tool proposed in [21]. 

The GraspIt! approach [21] tries to find the points of contact 

between a hand and a 3D object.  

 

  1: for each valid voxel 
ixv along the   axis 

  2:   for each valid voxel 
jyv along  axis 

  3:       check the neighbors ),( ji yxn  of ),( ji yxv  

  4:             if left ),( 1 ji yxn -  is valid 

  5:                  mark ),( ji yxv  as parsed voxel 

  6:                  then ignore ),( ji yxv  

  7:             else if upper ),( 1-ji yxn  is valid 

  8:                  mark ),( ji yxv as parsed voxel 

  9:                  then ignore - ),( ji yxv  

10:             else  

11:                  for each right consecutive valid voxel ),( jai yxv +  

12 :                      Rectangular prism width L = voxel_ length * a 

13:                 for each down consecutive valid voxel ),( bji yxv +  

14 :                      Rectangular prism height l = voxel_ length * b 
15:     end 

16: end 

17: check again for unparsed voxels ),( ji yxv
 

18:      while ( unparsed ),( ji yxv  > 0 ) 

19:            jump to line 1 

 20: finish 

Fig. 4. Pseudo-code for the voxels fusion algorithm. 



IV.  EXPERIMENTAL RESULTS 

The objects used during the tests contain both regular 

surfaces, as also articulated or prominent regions. For 

imaging the robotic scene, a Bumblebee® X2 stereo camera 

was used, while for grasping and manipulation a Pioneer® 3 

platform equipped with a 5 Degrees of Freedom (DoF) robot 

arm. All the tests were conducted in an indoor environment 

with constant illumination. The objects were placed on flat 

surfaces in random unknown positions and orientations in 

order to avoid over-segmentation. 

During performance evaluation al the measurements and 

approximations were compared against a ground truth (GT). 

The GT consist of a number of manual and automated 

measurements conducted on the objects: width, height, 

thickness, translation and rotation. The translation and 

rotation was measured with respect to a fixed reference 

coordinate system represented by an ARToolKit® [22] 

marker placed near the object of interest. 

A comparative analysis between the estimated data and the 

ground truth can be observed in Tab. 1. Each object was 

evaluated against its real width, height, orientation and 

translation. Since no depth information can be extracted from 

a single view, the evaluation against depth or volume is 

questionable. The depth information of each superquadric 

component is computed as the mass center of the respective 

sub-bounding ROI. 

In Fig. 5 an implementation of the proposed method against 

a general purpose object (e.g. bottle) is illustrated. By using a 

single superquadric approximation, the neck of the bottle will 

be omitted and considered as a body. The consequence of this 

issue is that no grasp points can be determined on the neck of 

the bottle. In our approach, the entire object is divided into 

two main regions: one for the body and one for the neck. In 

this way, as it can be seen from Fig. 5, the estimated shape 

approximates better the initial query silhouette. Because of 

the matching technique and the 3D bounding box, the contour 

of the object contains noise information. The noise is 

represented by a series of additional 3D points describing the 

surrounding region around the object border. To reduce this 

noise to an acceptable value an additional texture based filter 

which efficiently determines the object border was 

considered. The computational process is highly dependent 

on the number of 3D points parsed during the superquadric 

fitting process. As an example, a number of 22.998 3D points 

describe the object from Fig. 4. 

V. CONCLUSIONS AND OUTLOOK 

In this paper, a fast and robust method for object surface 

estimation using multiple superquadrics was presented. The 

usage of a query bounding ROI describing the object of 

interest gives a primary assumption about the object’s depth, 

enabling the algorithm to work efficiently on 2.5D data. By 

using a collection of parameterized models, the accuracy of 

object reconstruction is considerably increased. The voxel 

grid approach reduces the discrimination between regions 

with different 3D information density and in the same time 

increases the speed of the fitting process. By using different 

voxel side lengths the majority of the object features can be 

captured. 

As future work, the authors consider the speed-up 

enhancement, since for the case of complex shapes, the 

number of approximated superquadrics increases 

dramatically. In this sense, parallel processing (e.g. Graphic 

Processors) represent a good candidate for this job. The 

authors also consider enhancing the accuracy of surface 

approximation by using structured light sensors (e.g. MS 

Kinect) which provide a denser and more accurate depth map 

representation. 
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Fig. 5. Surface estimation process flow. (a) 2D segmented object. (b) 3D query formulation (bounding ROI). (C) Voxel based 3D shape representation. (d)  

Rectangular prisms which optimally crop the considered shape. (e) Final estimation of the initial query. 
 


