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Abstract. This paper presents a method for surface estimation applied on single
viewed objects. Its goal is to deliver reliable 3D scene information to service
robotics application for appropriate grasp and manipulation actions. The core of
the approach is to deform a predefined generic primitive such that it captures
the local geometrical information which describes the imaged object model.
The primitive modeling process is performed on 3D Regions of Interest (ROI)
obtained by classifying the objects present in the scene. In order to speed up the
process, the primitive points are divided into two categories: control and regu-
lar points. The control points are used to sculpt the initial primitive model
based on the principle of active contours, or snakes, whereas the regular points
are used to smooth the final representation of the object. In the end, a compact
volume can be obtained by generating a 3D mesh based on the newly modified
primitive point cloud. The obtained Point Distribution Models (PDM) are used
for the purpose of precise object manipulation in service robotics applications.

Keywords: Robot vision, 3D object reconstruction, Object structure estimation,
Primitive modeling, Service robotics.

1 Introduction.

Nowadays most service robotics applications use depth perception for the purpose of
environment understanding. In order to precisely locate, grasp and manipulate an
object, a robot has to estimate as good as possible the pose and the structure of that
object of interest. For this reason different visual acquisition devices, such as stereo
cameras, range finder or structured light sensors, are used [14].

For online manipulation, together with the pose of the object, it is needed to deter-
mine the 3D particularities of the viewed structure in order to estimate its shape [5].

There are several types of methods that focus on the 3D reconstruction of objects
using multiple perspectives. Such methods try to reconstruct the convex hull of the
object [11], or to recover its photo-hull [9]. Other algorithms explore the minimiza-
tion of the object’s surface integral with a certain cost function over the surface shape
[10].

On the other hand, the reconstruction can be addressed also from a single view.
This technique is usually efficient when applied to regular surface objects. An early
approach for this challenge was investigated for piecewise planar reconstructions of
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paintings and photographs [6]. Subsequent improvements of the technique [3], [13]
increased the geometric precision especially for scenes with multiple vanishing
planes.

In terms of reconstruction resolution and accuracy, range images (e.g. from laser
scanners) provide one of the best surface estimations data. However, it has speed
deficiency, sensor dimension and power consumption [8]. The main challenge en-
countered during 3D reconstruction is the automatic computation of the 3D transfor-
mations that align the range data. Thus, the registration of different perspective point
clouds into one common coordinate system represents one of the most researched
topics in the computer vision community [8], [12].

The rest of the paper is organized as follows. In Section 2 a brief description of the
image processing chain is provided. The main contribution of the paper, that is the 3D
shape modeling approach, is given in Section 3. Finally, before conclusions, perfor-
mance evaluation results are presented in Section 4.

2 Machine Vision apparatus

The block diagram of the proposed scene perception system can be seen in figure 1.
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Fig. 1. Block diagram of the proposed scene perception system.

The reference coordinates of the obtained visual information is related to the on-
line determined position and orientation (pose) of a robot which perceive the envi-
ronment through a stereo camera configuration [4] or using and RGBD sensor [17].
Since the robot can operate both in indoor and outdoor environments, the use of ste-
reo-vision, for outdoor scenes, and MS Kinect® [17] for indoor scenarios, is well jus-
tified. Once a certain pose is determined, the imaged scene can be reconstructed and
segmented for the purpose of environment understanding. The main objective here is
to get the depth, or disparity, map which describes the 3D structure of an imaged sce-
ne. This information is further used by the final object structure estimation algorithm,
which is actually the main focus of this paper. One of the main algorithms used in the
proposed vision system is the object classification method which delivers to the vol-
umetric modeling method the object class and the 2D object ROI. The classification



procedure is based on color and depth information. A detailed description of the ap-
proach can be found in [4]

3 Modeled based object structure estimation

The object structure estimation system is based on the active contour principle used to
manipulate a set of pre-defined Point Distribution Models (PDM) by stretching them
over a point cloud describing an object in a given 3D Region of Interest (ROI). In the
considered process, three main challenges arise: the sparse nature of the disparity
maps, for the case of stereo-vision configuration, the calculation of the 3D ROI and
the nonlinear object modeling.

3.1  The Generic Fitted Primitive (GFP)

In the presented work, a Generic Fitted Primitive (GFP) is defined as a PDM model
which serves as a backbone element for constructing a particular object, or shape. The
generic PDM primitive is represented by a data structure that has as background com-
ponent a shape vector X which contains 3D feature points describing the model of an
object class. In order to keep the initial structure compact, a second vector Y is used
to store the indexes of the un-deformed primitive triangulation such that after the
modeling process the moving points can be easily followed. Such example models are
shown in figure 2. Additionally, the structure contains a scale factor s, a rotation ma-
trix R and a translation matrix ¢t that relates the PDM to a canonical reference coordi-
nate system.

Fig. 2. Examples of meshed GFPs; (from left to right) chair, duck, helmet and mug.

Since in the considered source of visual information, that is disparity images or depth
maps, only one perspective of the imaged object is available, the PDM model is actu-
ally used to augment the missing information. In this case, we consider objects that
have a symmetrical shape. Nevertheless, the proposed approach can be applied on
irregular shaped entities. Depending on the complexity and regularity of the surface
object, the primitive model can be defined either by a low or a high number of 3D
feature points. For example, the mug shown in figure 2 is described by 412 feature
points. Since the PDM describing such an object represents an almost regular surface,
not all these points are important for the object modeling process. In this sense, primi-
tive points can be divided into two main categories. The first category is represented



by regular points, or points with low discriminative power which usually form con-
stant geometrical surfaces. The second category assembles the so-called control
points, namely those points that define the shape of an object. Furthermore, control
points can be automatically determined based on three main characteristics [2]:

1. Points marking the center of a region, or sharp corners of a boundary;

2. Points marking a curvature extreme or the highest point of an object;

3. Points situated at an equal distance around a boundary between two control points
obeying rule 1.

In the same time, control points can be determined manually under the guidance of
a human [16]. This last method captures the features of an object more efficiently but
suffers from subjectivity on features definition since the process is controlled by a
human person. Depending on the modeled object, in our approach we used both the
automatic and the manual techniques to determine control points. Using the intro-
duced points, the computation time is increased since the number of points describing
the shape of an object is usually much lower than the total number of points from the
GFP. The 3D positions of the GFP points are actually directly dependent on the posi-
tions of the control points, as it will later be shown in this section. For example, from
a total of 1002 points describing the helmet primitive from figure 2, only 473 of them
(marked with red dots) are considered to be control points. On the other hand, for a
complex object, this number can be equal to the initial PDM features number, mean-
ing that all points from the primitive are considered to be control points since all of
them are needed to capture a specific feature. Taking into account a lower number of
control points will considerably increase the computational speed of the modeling
process.

3.2  Disparity Map Enhancement

The presented modeling principle accepts as input information a dense point cloud of
the object which structure will be estimated. In this sense, the MS Kinect® [17] sensor
has no problem in providing such dense information, whereas the stereo camera con-
figuration outputs a sparse disparity maps. Namely, it contains “holes” or discontinui-
ties in areas where no stereo feature matching exists [1]. Such discontinuities are pre-
sent in low textured regions or constant color areas from the environment.

To overcome this issue we propose an enhancement method which deals with dis-
parity maps discontinuities. Basically, the idea is to scan each point from a disparity
image and determine if there is a gap between the considered point and a neighboring
point situated at a certain distance, as shown in figure 3(a). Since we apply the princi-
ple on disparity maps, which are defined on the 2D domain, there are only 5 main
neighboring directions from a total of 8 in which we search for discontinuities. The
untreated 3 directions refer to the back of the centered point and it is assumed that are
no discontinuities in that direction since the position is already searched.

The disparity map is actually a grey scale image with pixel intensities inverse-
proportional to the distance between the considered 3D world point and the camera’s
position. Having in mind that the disparity image is represented using 8 bits, we sam-



ple it using 256 layers, each corresponding to certain intensity in the disparity domain.
The enhancement process searches for discontinuities only in one layer at a time,
since there is no information about the connectivity of the intensities. In this sense,
the layers are stored using a 256 bins histogram. For each pixel in each layer the
number of the same intensity along a direction is calculated. In order not to merge two
different objects, the search area is reduced to a finite value, dynamically calculated.
The search process starts from the lowest neighboring distance value, which has a two
pixels length, and ends when a discontinuity is found or the maximum length is
reached. The discontinuity is determined by comparing the length of the direction
with the number of the same intensity pixels found along this direction. If the number
of pixels found is below the length of the considered direction, the missing positions
are filled with pixels with the same intensity as the ones already found.

There is a slight chance that two closely positioned objects are merged by the algo-
rithm. In order to overcome this challenge, a variance driven image of the disparity
map has been used [15]. From the variance image only object contours are extracted.
In this way it can be determined if the points which take part in the fill process belong
to one single region or to a neighboring region. The result of the presented method
will be a compact and dense representation of the disparity image, as shown in figure
3(c). On the other hand, it is needed to connect the layers which are very close (in
terms of disparity) in the 3D model. This can be achieved by diffusing the gradient
separating two neighboring intensities. In order to preserve the 3D features of the
object, the diffusing process will occur only for regions with translation of intensity
no grater then 5 intensities layers. In this way, the obtained layers are smoothly con-
nected.
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Fig. 3. Disparity enhancement algorithm. (a) Missing pixels searching principle. (b)Original
disparity map. (c) Enhanced disparity image.



3.3 3D ROI definition

Because of the complexity of the scene, it is difficult to apply the modeling process
directly on the entire scene. To overcome this issue, we propose the definition of a
local frame attached directly to the object which we want to model, rejecting from the
scene all the redundant information. This process starts in the 2D domain by segment-
ing and classifying the objects from the scene and providing, besides the class to
which the object belongs, 2D ROI’s feature vectors [p;,pg], i = 1,2,3,4. This de-
scription restricts the object search area to a quadratic region of interest. For the ste-
reo-vision configuration the 3D ROI is determined by computing the disparity be-
tween the left and right ROI points. In this way only a planar representation (slice) in
the 3D space is obtained. The volumetric property is evaluated starting with the as-
sumption that the pixels inside the 2D ROI describe only the object. The depth is
determined statistically by finding the highest density of 3D points which lie inside
the planar ROI along the Z 3D Cartesian axis. A 3D representation of the ROI can be
seen in figure 4. However, there is a possibility that the highest density of 3D points
belongs to a noise entity outside the object border but still inside the ROI.

To overcome this problem, a histogram of the disparity image is calculated. Instead
of searching only the top density value of the intensities in histogram, we check also
the highest aperture of the histogram for the considered top density. Basically we
determine the highest distribution of connected points by summing all the densities
from the slices of the aperture belonging to a top value of the histogram as:

d = %t max(h(i)), (1)

where d represent the highest cluster of 3D points, h(7) is the number of pixels for a
certain bin i and a, b are the closest and farthest non zero h(i) relatively to the con-
sidered intensity i, respectively. The margin of the aperture is actually defining the
first and last planes of the 3D ROI volume along the Z axis, respectively.
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Fig. 4. 3D ROI computation. (a) Input image together with the calculated 2D ROI. (b) Histo-
gram cluster segmentation. (c) 3D ROI re-projection.

For the case of the MS Kinect sensor, the ROI formulation is trivial. The final
bounding box can be easily extracted by a simple selection, from the depth map, of
the points laying inside the segmented 2D ROI.



3.4 PDM Shape Alignment

The 3D alignment process deals with the calculation of the rotation and translation of
the primitive shape with respect to the point cloud distribution inside the 3D ROI.
Because each PDM, that is primitive and point cloud, is defined in its own coordi-
nates system, a similarity transformation is used to align the two models. Since the
ROI’s PDM is related to the same coordinate system as the 3D virtual environment,
we have chosen to bring the primitive’s PDM into a reference 3D environment coof-
dinate system. The reference coordinate system is given by the on-line determined
pose of the stereo camera [4]. In this sense, the primitive is considered to be a transla-
tional shape, while the 3D ROI is marked as a static cube. The similarity transfor-
mation is described by:

Xnew = SR(Xold - t)! (2)

where, x,;4 and x,.,, represent the 3D coordinate of a point before and after the simi-
larity transformation, s is a scale factor, while R and t are the matrices defining the
rotation and translation of a point, respectively. These coefficients represent the De-
grees of Freedom (DoF) of a certain shape.

The scale factor is determined based on the 3D point cloud information inside the
ROI. Since a disparity enhancement is considered before the 3D re-projection process,
it can be presumed that inside the ROI exist one or more large densities of points
which describe the object of interest. For each model or point cloud is determined the
radius of a centered sphere which embeds the respective point cloud. By computing a
ration between these radiuses, a scale factor can be determined.

The translation of the moving shape is easily determined by adding the center of
gravity of the points inside the 3D ROI from the center of gravity of the primitive
PDM, as follows:

1oy 1 oNp
t= azl‘zlai + azj‘zlbjl (3)

where, n,, represent the number of points of the model and a and b are the two densi-
ties of points, that is of the object’s shape (primitive model) and of the fixed point
cloud inside the 3D ROIl. The rotation between the two models is not so trivial to
obtain. Because one of the models represents only a perspective of the second one, the
rotation can be determined by matching these two entities. This operation starts by
computing the shape descriptors for each model based on the FPFH descriptor [18].
Next, a Sample Consensus Initial Alignment (SAC-1A) algorithm [18] is used to de-
termine the best transformation between the two entities. This transformation contains
also the rotation of the primitive relative to the reference point cloud, which is the
scene object.

By using the proposed alignment method, a rough object volumetric estimation is
obtained based on the fitting primitive principle. An example result of the similarity
transformation can be seen in figure 5, where, the red silhouette represents the PDM
primitive shape whereas the blue model represent the object from the scene.



Fig. 5. Primitive PDM shape alignment example.

3.5 PDM Primitive modeling

The points which drive the modeling process are the control points described in a
previous subsection. The behavior of the other points in the PDM model is automati-
cally derived from the movement of the control points. The modeling process is
achieved by dragging after each control point the neighbors from the surrounding
area. Each of the neighbor point is moved based on a physical relation describing the
property of the considered object. This relation can be either linear, as in equation 4,
or non-linear for more complex surfaces. For simplicity if explanations, we have con-
sidered in this work a linear relation between control and the rest of the PDM points:

Xnew = Xola (1 + %): 4
where, x .., and x,;4 represent the new and old 3D coordinates of the considered
neighboring points, respectively, d,,., is the distance between the control point and
the farthest neighbor within the affected area and d .. represent the distance between
the control point and the translated neighbor. The results of such a linear modeling are
shown in figure 6, where control points are marked with red, their neighbors are la-
beled with blue the rest of the PDM points are green. The surrounding dragged area
has the shape of a cube centered on the control point 3D coordinate and has its area
defined as double the distance between the initial and the new position of the control
point, as depicted in figure 6.
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Fig. 6. A linear dependency between a control point and its neighbors. (a) Initial PDM shape
model.(b) Point deformation along a considered direction.

The proposed approach for estimating an object’s volume starts with a generic object
PDM model, namely a primitive, and ends by capturing by each primitive control
point the local features of the modeled object of interest. As explained, this is
achieved by minimizing the distance between the control point and the PDM in a
respective neighborhood. The minimization procedure is based on the active contours
principle, better known as snakes [7]. This approach represents a deformable contour
model of the considered object.

In an image, an active contour is a curve parameterized by the minimization of and
energy functional:

£() = €me(0) + Eexe(©) = [[[Einc(c(9)) + Eexe(c(s))]ds, (5)

where, E;,;and E.,are the internal and external energies, respectively and c(s) =
[x(s), ¥(s), z(s)] represents the curve describing the object’s surface, whiles<[0]].

By defining an initial contour within an image, it will move under the influence of
internal forces computed based on the derivatives from the active contour an also
under the influence of the external forces captured from the image.

In the presented 3D object modeling approach, the image domain is equivalent to
the 3D representation of the scene. For this reason the same energy minimization
principle has been used to model the shape of an object. Instead of using an initial
active contour, as in the original method, we propose the use of a 3D generic primi-
tive PDM model. The movement of the contour surface is thus described by the direc-
tion of the lowest functional energy, that specific region actually corresponding to a
probable contour in the image [19]. In the considered 3D case being the highest densi-
ty of points from the 3D scene.



The idea of using forces to move the primitive points is that the primitive PDM
must be attracted and fitted on the border of the object. The internal forces, which
refer exclusively to the primitive PDM, are responsible for supervising the shape
smoothness and continuity. As described in the equation 6, the continuity property is
controlled by the first derivate while smoothens is define by the second derivate of the
surface.

Eint = Econt + Ecurv = é(a(s)lv’(s)lz + ﬁ(s)lvu(s)lz): (6)

where, E.,,; IS the energy responsible for the continuity of the surface and E.,,,., deals
with the bending property of the hull of the object. a and p are two parameters which
influence the E,,,; and E,,, forces, while v(s) = [x(s), y(s), z(s)] represent the
coordinates of a point from the shape vector X. In the discreet domain the two ener-
gies can be rewritten as:

Econe = (i — %2+ i — yim1)* + (7 — z121)?, (7
Ecury = (Xi21 — 2x; + X4 1)2 + (xj-g — 2x; + xi+1)2 + (xjo1 — 2x; + x4 1)2 )
(8)

where, x; ¥;,z;€ X, i =0,....n, and n, is the number of points in the shape PDM

vector. In the original formulation of the principle, each point from the shape can be
moved in one of the eight possible 2D directions. In current 3D approach, because of
the third dimension, a number of 24 directions are taken into account.

The correct moving direction is mainly influenced by the external energy Eg,;
which evaluates for each direction the highest density of 3D points. Because this den-
sity can be spatially very close, a weight factor for the external energy is introduced.
Thus, if these candidate positions have an appropriate number of points, the weight
factor will be considered zero.

Since we have only one perspective of the object, there are large object areas with
no 3D point cloud description needed to drive the contour energies. The un-imaged
back side of an object represents such an example. In the proposed approach, the
missing information is filled by the generic data introduced by the PDM primitive
model.

4 Experimental results

The main objective of the presented approach is robust 3D object structure estimation
for appropriate object grasping and manipulation in service robotics. In order to
prove the reliability of the concept, different types of objects were estimated, starting
from more simple models (e.g. mug and bottle) and ending with high irregular geo-
metrical shapes (duck, chair or helmet). Since the robot can operate in any environ-
ment, the experiments were conducted both outdoor, using a Point Grey Bumblebee®
stereo camera system [20], and indoor using a MS Kinect® RGBD sensor [17]. The
sensing devices were mounted on a Pioneer P3 — DX robotic platform [21] equipped



with a 7 DOF Cyton 2 robotic arm [22]. The grasp plan action was performed using
Grasplt! library [23].

The Ground Truth (GT) data against which the proposed method has been tested is
composed of a number of manual measurements conducted on the objects: width,
height, thickness, translation and rotation. The translation and rotation was measure
with respect to a fixed reference coordinate system represented by an ARToolKit®
[24] marker.

4.1  Mug modeling

The mug primitive structure is defined by 412 points out of which only 258 are defin-
ing the actual structure of the shape (control points). Three different mugs were
placed on a flat surface, in and indoor scenario. The scene was perceived using the
MS Kinect sensor. The structure estimation method was applied independently on
each segmented mug. The time consumed for the entire estimation process, including
segmentation, classification, initial raw alignment and modeling process of all consid-
ered shapes, was 11.76 seconds on an Intel Pentium 15 2.30 GHz platform. The result
obtained is depicted in figure 7.

Fig. 7. Segmented modeled mugs

The first two mugs (red and blue) were accurately positioned, with a pose error below
3%, while the green mug positioning produced an increased error because of the oc-
cluded part of the handle. Lacking distance information, the handle was positioned
randomly in the unseen part of the model, producing in the end a 3D volume with a
low confidence for grasping. Regarding the first two models, more than 65% of primi-
tive points were repositioned during the structure estimation process, leaving the rest
of 35% points to generally estimate the occluded parts of the mugs. Based on the new



3D definition of the model, the grasp action had a successfully grasp rate of over
95%. In figure 8, the difference between the initial 3D structure of the primitive (pre-
sented as a green mesh) and the modeled one (red mesh) can be intuitively observed.

Fig. 8. Mug GFP meshes before (green) and after (red) the fitting process. The blue lines repre-
sent the directions of the features normals.

4.2 Helmet modeling

Representing a large volume in reality, a helmet can be difficult to estimate because
of the elongated shape and also since it produces large occluded regions. The primi-
tive is defined by only 1002 feature points whereas the sensed visible part is described
through 15378 feature points. In order to efficiently align and model the primitive, the
scale ratio between the primitive and the object cloud, together with a raw transfor-
mation matrix, must be correctly determined. For the cases where the object is seen
directly from the front it is almost impossible to correctly estimate the scale since the
centered sphere will embed a small cloud representing only a part of the object. In this
sense, the object must be observed from a more distanced view point. An initial raw
alignment for a helmet can be observed in figure 5.

After the modeling process, 734 out of 1002 primitive points have captured the lo-
cal geometry of the object of interest, creating in the end a meaningful compact vol-
ume. The result of such reshape action can be observed in figure 9. Because the primi-
tive helmet (war helmet) is rather different from the imaged helmet (climbing helmet),
the occluded part is more protuberant and can be easily observed. During tests, the
presented modeling method has proved its efficiency and robustness as long as the
observed object does not have more than 60% of its surface occluded. Above this
value, the scale and the translation of the primitive are ambiguous.

The statistical measures of achieved errors in all the experiments are given in Table
1.



Table 1. Performance evaluation results for the proposed GFP estimation approach.
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Object Rotation (%) Translation (%) Primitive Points Volumetric Or(éluiccj;d

o | 0 | o | x | y | z | Total | Modeled | error (%) (%A) )
Mug 41| 12 | 24 | 01 | 074 | 17 | 412 258 2.78 47
Helmet | 25 | 0.7 | 24 | 0.25]|0.14 | 1.2 | 1002 734 3.12 28
Duck | 51| 32 | 42 | 13| 21 | 3.1 | 2329 1452 5.72 45
Chair | 0.7 | 1.3 | 15 |201| 01 | 0.8 | 842 548 1.35 19
Bottle | 0.1 | 04 | 0.3 | 05 | 06 | 1.15| 382 305 2.71 36
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Fig. 9. Object structure estimation. (a) Initial primitive alignment between the primitive (red
mesh) and object point cloud (blue point cloud). (b) Final modeled primitive.

5 Conclusions

In this paper, an object volumetric modeling algorithm for objects of interest encoun-
tered in real world service robotics environments has been proposed. The goal of the
approach is to determine as precisely as possible the 3D particular surface structure of
different objects. The calculated 3D model can be further used for the purpose of
visually guided object grasping. As future work the authors consider the time compu-
tation enhancement of the proposed procedure through parallel computational devices
(e.g. Graphic Processors), as well as the application of the method to other computer
vision areas, such as 3D medical imaging.
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