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optimise the algorithms in order to make 

them faster [5, 6, 11]. The most relevant 

modification of the Delaunay algorithm, 

presented in [2], allows the computation of 

millions of points, making it suitable for 

many 3D applications. The points needed 

to reconstruct an object can be obtained 

either from a disparity image [9], 

computed from pairs of stereo-images, 

either from an image range sensor or a 

laser sensor. The last two methods are time 

consuming but offer a much better 

representation of the object of interest.  

  This paper is organised as fallows. In 

Section 2 we review the Voronoi diagrams 

and Delaunay triangulations outlining their 

essential characteristics. In Section 3 the 

Delaunay triangulation algorithm is 

described. Section 4 presents some 

applications of the concepts to surfaces in 

the 2D and 3D spaces, respectively. We 

conclude with a discussion on the 

performances of the methods.  

 

2. Solving the reconstruction problem 

 

Starting from a set of sampled points, the 

reconstruction problem can be defined as a 

method to establish neighbourhood 

connections between the samples. This 

geometric construction can be made using 

Voronoi diagram and its dual Delaunay 

triangulation.  

 

2.1 Voronoi diagrams. Definition 

 

The Voronoi diagram is easy to describe 

and, via a duality relationship, it facilitates 

the description of the Delaunay 

triangulation. Given a set P of n points in 
dÂ , the Voronoi diagram partitions dÂ  

into n cells: one cell is associated with 

each point in P. For point p  P, we 

denote the associated Voronoi cell by V 

(P). The extent of V (p) is simply the 

entire region of dÂ  whose distance to P is 

realized by the distance to p. That is, the 

set of points that is at least as close to p as 

it is to any other point q  P.  

The set of Voronoi cells forms a 

covering of S called the Voronoi diagram 

of P. The Voronoi diagram gives a very 

natural definition of the neighbours of a 

point p  P.  

The Voronoi cells are convex polygons 

in 2Â , and in higher dimensions they are 

convex polytopes [10]. Indeed, V (p) can 

be constructed as the intersection of the 

n−1 half spaces each of which contains 

point p and is bounded by the orthogonal 

bisector of [p, q] for some q  P. The 

intersection of d+1 or more Voronoi cells 

is either empty or a single point, called a 

Voronoi vertex. A Voronoi vertex v is 

equidistant from the elements of P whose 

Voronoi cells define it. Thus if 

)(0 i
d
i pVv ==I , then the ip  all lie on a 

common hyper sphere centred at v. For a 

random set of points dÂÌP , the chances 

of more than d + 1 points lying on a 

common hyper sphere is vanishingly small 

[7]. The set P is said to be in general 

position if the intersection of more than 

d+1 Voronoi cells is always empty. 

 

2.2 Delaunay triangulation. 

 

For P in general position, the Delaunay 

triangulation of P  dÂ  is the dual of the 

Voronoi diagram of P  dÂ . In the planar 

setting, the duality relationship is as 

follows: to each Voronoi vertex c we 

associate a Delaunay triangle, t whose 

vertices are the three samples which define 

c. An edge e = [p, q] of t is dual to the 

Voronoi edge V (p) ∩ V (q). The vertices 

of the Delaunay triangulation are the 

sample points, and they are dual to the 

corresponding Voronoi cells in the 

Voronoi diagram. Let assume triangle 
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∆pqr is counter clockwise and let C be the 

circumscribed circle of ∆pqr. Consider T 

to be a triangulation of P.  Let 2)ur,( PÎ  

such that ∆pqr and ∆pqu are triangles of T. 

We want to design a test which gives 

information about the 4
th
 point, called u, of 

the polygon. If CuÎ then 

0),,,( =urqpinCircle , else if u is outside 

C then 0),,,( >urqpinCircle  else u is 

inside the circle and satisfy 

0),,,( <urqpinCircle . The inCircle test is 

computed based on equation 1. 
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Given this approach, it is necessary to 

determine the orientation of the polygon 

edges in 3Â . This can be establish easily 

by determining the orientation of 

tetrahedron p q r u which is equal to 

orientation of ),,( PUPRPQ . Equation 2 is 

used to determine the orientation of the 

tetrahedron.  
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All properties which will be mentioned 

have been treated for the planar Delaunay 

triangulation by exploiting the edge flip 

algorithm. We say that edge e′ = [r, u] is 

locally Delaunay if p is not contained in 

the circumscribed circle of ∆qru, or 

equivalently, if q is not contained in the 

circum circle of ∆ rpu. Also this can be 

demonstrated by computing the sign of the 

inCircle (p,q,r,u) function. There is to a 

convenient characterization of a locally 

Delaunay edge e′: the sum of the angles at 

the opposing vertices, p, and q, does not 

exceed π [4]. It is easy to show that if edge 

e is not locally Delaunay (NLD), then p q r 

u is a convex quadrilateral and the 

opposing edge, e′, will be locally 

Delaunay.  

If [p, q] is illegal, we can perform an 

edge flip by removing [p, q] from T and 

insert [r, u], see figure 1. Now [r, u] 

becomes locally Delaunay. 

 

 

Fig. 1. Perform an edge flip. The lifted 

triangulation gets lower and the upper 
envelope becomes convex 

 

 Note that if all the edges in a 

triangulation are locally Delaunay, then the 

triangulation will be a Delaunay 

triangulation.  

 

3 The reconstruction algorithms 

 

Many surface reconstruction algorithms 

provide guarantees on the quality of the 

output surface if specific sampling density 

assumptions are met. 

 

3.1 A first algorithm. 

 

Consider a triangulation T of P. If all 
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edges of T are locally Delaunay, the 

algorithm ends, otherwise select an illegal 

edge and flip-it. The algorithm ends when 

all edges of T are locally Delaunay. The 

input for the algorithm is a set P of n 

planar points. The output represents the 

Delaunay triangulation, DT (P), of those 

points. Figure 2 shows the algorithm in 

pseudo code. 

 

1: compute a triangulation T of P 
2: initialize a stack which contain all the  

    edges of T 

3: while stack has elements 

4:    do pop [pq]  segment from stack and  

           unmark it 

5:       if [pq]  is illegal then  

6:          do flip [pq]  to [ru]  

7:             for { }upqurqpqxy ,,,Î  

8:                do if xy  is not marked 

9:                    then mark xy  and push it  

                             on stack 

10: return T 

 

Fig. 2. The Delaunay triangulation flip 

test  
 

The program runs in )( 2nQ  time. An 

edge can be flipped only once because 

afterward it remains above the lifted 

triangulation. If there are )( 2nQ  edges, the 

algorithm will run in )( 2nQ  time. 

 

3.1 Randomize incremental algorithm 

 

Considering the above algorithm let 

suppose that we have to introduce new 

points in a desired area. Those points will 

rip the edges in that zone. In this case we 

have to recompute the triangles from that 

area. Before we introduce the new point 

we have to be sure that all the triangles are 

DT (P).  After that, we introduce the new 

point 1p  and split the surrounding triangle 

in 3 triangles. Perform edge flips until no 

illegal edge remains. After that, all the 

triangles become DT. Repeat the process 

for all new points. Figure 3 shows the 

algorithm in pseudo code. 

 

1: Find the triangle pqrD  of the 

       DT(PU { 1p }) containing 1p  

  2: Insert edges rpqppp 111 ,,  

  3: Check for conflict Þ  perform  

      SwapTest( ][ pq ) 

  4:       if [pq] is an edge of the exterior  

              face  

  5:         do return 

  6:          u¬vertex of right edge of [pq] 

  7:            if inCircle( 1p ,p,q, u) < 0   

  8:               do flip edge [pq] for [ up1 ] 

  9:        SwapTest([pu]) 

10:       SwapTest([uq]) 

11:     Perform SwapTest( ][uq ) 

12:       if [uq] is an edge of the exterior 

              face  

13:         do return 

14:         m¬vertex of right edge of [uq] 

15:            if inCircle( 1p ,q,u,m) <  0 

16:               do flip edge [uq] for [ mp1 ] 

17:        SwapTest([qm]) 

18:       SwapTest([mu]) 

19:     Perform SwapTest( ][ pu ) 

20:       if [pu] is an edge of the exterior 

              face  

21:         do return 

22:         n¬vertex of right edge of [pu] 

23:            if inCircle( 1p ,p,u,n) <  0 

24:               do flip edge [pu] for [ np1 ] 

25:        SwapTest([pn]) 

26:       SwapTest([nu]) 

27: SwapTest( ][qr ) (similar to point 3) 

28: SwapTest( ][ pr ) (similar to point 3) 

 

Fig. 3. Incremental Algorithm 
 



T.T. COCIAS et al.: A Survey on Applied 3D Reconstruction 5 

An edge between two triangles that do 

not contain the new point 1p  was locally 

Delaunay before the insertion and will 

remain locally Delaunay. In conclusion we 

flipped only edges of triangles that contain 

point 1p .   The time needed to update the 

current triangulation is proportional with 

the number of edges that contain 1p . Each 

new edge will contain, after splitting the 

original triangle, the new point with a 

probability of 
i

2
 where i is the number of 

the inserted points. There are )(iQ  new 

edges in the whole triangulation. Overall, 

the time needed to recompute all 

triangulation can be approximated using 

the next formula:  

 

)log()(
1

nn
i

nn

i

Q=Q å
=

                        (3) 

 

Knowing the Delaunay triangulation  P 

we can find the Voronoi diagrams of P in 

)(nQ  time. 

 

4. Aplicability 

 

Most results pertaining to surface 

representation by Delaunay structures have 

arisen in the context of surface meshing 

and surface reconstruction. Both depend on 

surface sampling theory and the geometric 

accuracy of triangle meshes. 

Also, the Delaunay triangulation have 

applicability on 2Â , in generation of the 

nearest neighbourhood graph, minima, 

spanning tree (MST), or finding the largest 

empty circle.   

In 3Â  is used for 3D reconstruction, 

meshing, remeshing or path planning.  

In surface meshing, it is used to produce 

a set of samples P and a mesh M, from a 

surface S. The vertices of the mesh are 

represented by the P samples. The 

algorithm must produce a mesh that meets 

given geometric accuracy requirements.   

 In surface reconstruction, the input is the 

set of samples P and, aside from some 

regularity assumptions (i.e. that it was a 

smooth surface), the surface S is unknown. 

Again one wishes to construct a model that 

adequately represents S (see Figure 4). 

The time needed to obtain the 

triangulation from Figure 4 was 30,98 

milliseconds. For one point, the algorithm 

was covered in 2,38 milliseconds. For a 

complex set of point, the triangulation can 

be computed in seconds, thus making this 

approach suitable for many 3D 

applications. 

 

Conclusion 

 

In this paper we present a technique for 

constructing Voronoi diagrams and how to 

optimally compute a Delaunay 

triangulation. The algorithms are simples, 

easy to implement and efficient. The 

theoretical worst-case running time is 

)log( nnQ , thus making this approach 

suitable for many real-time 3D 

reconstruction application. The question of 

space and time complexities of Delaunay 

refinement algorithms for three 

 

Fig. 4. Lifting the DT (P) to produce a 

tree dimensional shape. 
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dimensional domains remains mostly open. 
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