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Abstract In this paper, a new object tracking system is
proposed to improve the object manipulation
capabilities of service robots. The goal is to continuously
track the state of the visualized environment in order to
send visual information in real time to the path
planning and decision modules of the robot; that is, to
adapt the movement of the robotic system according to
the state variations appearing in the imaged scene. The
tracking approach is based on a probabilistic
collaborative tracking framework developed around a
2D patch-based tracking system and a 2D-3D point
features tracker. The real-time visual information is
composed of RGB-D data streams acquired from state-
of-the-art structured light sensors. For performance
evaluation, the accuracy of the developed tracker is
compared to a traditional marker-based tracking system
which delivers 3D information with respect to the
position of the marker.
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1. Introduction

One of the main tasks of service robotics systems
operating in human environments, such as the FRIEND
(Functional Robot with dexterous arm and user-frIENdly
interface for Disabled people) [1] and PR2 (Personal Robot 2)
[2] platforms displayed in Figure 1, is to reliably handle
common household objects, such as plates, bottles or
boxes, usually placed in heavy cluttered scenes. The
common approach in many mobile manipulation
scenarios is to recognize and calculate the pose (position
and orientation) of the objects of interest [3], followed by
further manipulative actions [4]. Throughout the
manipulation procedure, there is no visual information
available with respect to the imaged scene, that is, of the
pose of the objects of interest and of the obstacles. Such a
high uncertainty increases the risk of robotic handling
failures if the state of the environment changes, namely if
the poses of the objects, as well as of different obstacles
present in the scene, varies.
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(b)
Figure 1. Mobile manipulation platforms: (a) FRIEND, (b) PR2.

The main goal of tracking rigid bodies in robotics is to
determine their pose with respect to a common reference

coordinate system W, such that, if the state of the
environment changes, the manipulation path of the
robotic system is changed accordingly. This challenge is
illustrated in Figure 2, where different tracking snapshots
of an object of interest are illustrated. The object is tracked
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both at the 2D image level (see Figure 2[a-d]), as well as
in the 3D point cloud data (Figure 2[e-h]) delivered by an
RGB-D (Red, Green, Blue, Depth) MS Kinect® camera. The
main advantage of such sensors is the calculated depth
map, or point cloud, structure, which, along with the RGB
image, describes the colour and real-world distances
between the sensor and the visualized surfaces. Recently,
they have become an intensively used perception sensor
in a large number of indoor robotic applications.

In this work, we tackle the challenge of a single rigid
object of interest pose O tracking with respect to W. The
approach is based on a collaborative tracking framework
which determines the pose of the object in the 2D image,
while simultaneously tracking 3D point cloud features on
the object of interest.

The contributions of the paper may be summarized as
follows:

e development of a collaborative robotic tracking
framework for fusing information from more
trackers;

¢ implementation of a 2D-patch-based particle filtering
algorithm for tracking a reference object of interest;

e occlusion detector based on ray casting using an
RGB-D camera system;

e usage of object tracking for improving mobile
manipulation scenarios.

As will be shown in the performance evaluation section,
it is relatively difficult to compare the results of the
proposed tracker, which by its nature processes 3D
information, to existing 2D systems. Although there are a
large number of image-based trackers which accurately
deliver visual information in the 2D image domain, the
tracker presented in this paper is intended to be used in
service robotics application where 3D information
regarding the objects of interest is imperative.

(® (b
Figure 2. Tracking during object grasping and manipulation. Snapshots of 2D features (a-d) and 3D point cloud (e-f) tracking.
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1.1 Related Work

Although object tracking is a well-developed research
area in the computer vision community, its application
both in mobile manipulation and robotics in general [5] is
quite restricted. Recently, Krainin et al. [6] applied the
concept of object tracking during manipulation for
building online 3D models of objects of interest. As they
remark, the online learning and tracking of new objects is
an imperative task for successful robotic manipulation
scenarios. Also, tracking approaches have been proposed
by Wang et al. [7] and Krainin et al. [6] for the purpose of
hand tracking and modelling.

Teichman and Thrun [8] proposed a semi-supervised,
boosting classification approach to the problem of track
classification in dense 3D range data. The method uses a
series of 2D-3D features, such as Spin images, Histogram
of Oriented Gradients (HOG) and the object’s oriented
bounding box size.

A novel paradigm for training a binary classifier in the
context of tracking has been proposed in [9, 10, 11] for the
problem of pure 2D image Region of Interest (ROI)
tracking. The learning process is guided by positive (P)
and negative (N) constraints which restrict the labelling of
the unlabelled set. P-N learning evaluates the classifier on
the unlabelled data, identifies examples that have been
classified in contradiction with structural constraints and
augments the training set with the corrected samples in
an iterative process. Another online boosting tracking
technique has been proposed by Grabner and Bischof [12]
and Stalder et al. [13]. These authors propose an on-line
AdaBoost feature selection method. Contrasting them
with traditional features such as Haar wavelets [14],
Wang et al. [17] proposed the usage of so-called
superpixels for the purpose of object tracking.

Boosting is a machine learning technique used in a
variety of computer vision applications such as image
segmentation, text and object recognition, natural
language processing, medical diagnostics, etc. In this
paper, a boosting approach similar to the one described
by Grabner and Bischof [12] has been used to track the
object of interest in the 2D image domain.

One of the first applications of boosting in the area of
computer vision was conducted by Viola and Jones [14]
for the purpose of fast object detection. In this research,
boosting, in its AdaBoost variant [19], was used for the
purpose of feature selection. Traditionally, the classifier
training approach was performed off-line using a large
amount of training samples [14]. In this work, the focus is
on object tracking without using off-line training. Hence,
the training examples are composed of the first streams of
images from the image acquisition system. The tracked
features are composed of Haar-like patches.
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In a number of recent papers, such as that by Choi et al.
[15], the output results from more trackers are fused
together using a weighting scheme to improve the
performance of the overall tracking procedure. The same
concept has been successfully applied by Yang et al. [16]
in relation to the problem of tracking the motion of the
human heart. In Yang et al. [16] a collaborative tracking
framework is suggested.

Tracking has also been heavy investigated in relation to
camera pose and the dense 3D reconstruction of human
environments. The DTAM (Dense Tracking and Mapping)
system proposed by Newcombe et al. [17] relies not on
feature extraction, but on dense every-pixel processing.
As a single hand-held RGB-D camera passes over a static
scene, detailed textured depth maps at selected
keyframes are estimated in order to produce a surface
patchwork with millions of vertices.

2. A collaborative tracking framework

The collaborative nature of the tracking framework is
defined within the classical Bayesian tracking approach.
Let x, be the state, that is, the true 6-DoF (Degrees of
Freedom) pose of the tracked rigid body, or object, at time
instance t:

=[x ¥ ze @ Ve 6], ¢y

where x;, y. and z, give the 3D position along the three
Cartesian axes, while ¢, ¥, and 6; represent the
orientation.

The tracking challenge can be defined as the estimation of
the posterior probability p(x; | Z;,), where z;, are the
past t poses, or state measurements:

Zy = {21, 23, o, 2} )

Sequential Bayesian tracking follows a Markov modelling
approach, where the prediction step is defined as:

P(Xe | Z14-1) = fp(xt | Xe—1) " PXemq | Zpie—1)dXe—g (3)

The update state is defined as:

P(Xe | 216) = p(Z¢ | Xe) - P(Xe | Z1:p-1)- 4)

In order to improve the tracking capability, we propose a
set of collaborative trackers that can take advantage of
each other’s data. The tracking framework is built around
a set of two trackers:

e a 2D patch-base tracker p(r;) which tracks a reference
patch in the RGB-D input stream;

e a 2D point-base tracker p(r,) that aims to track 2D
point features in the 2D image domain, as well as
determining direct 2D-fo-3D correspondences for
estimating the 3D pose of the tracked object.
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Figure 3. Block diagram of the proposed 2D-3D object tracking approach for robotic grasping and manipulation (best viewed in colour).

Both trackers contribute to the final state estimate as:

P(ze | X0) = p(xe [ 2, p(r)) +p(Xe |2, () (5)

As suggested by Yang et al. [16], the information from
both trackers may be fused as:

Xt = argmaxy, p(Xe [ Z4.) (6)
3. 2D-3D Object Tracking

The block diagram of the proposed tracking loop for
improving the mobile manipulation capabilities of service
robots is shown in Figure 3. The first step in the diagram
is to acquire a stream of RGB-D data, that is, data of
images with corresponding depth information provided
by structured light sensors (e.g., MS Kinect®, Asus®) or
stereo cameras (e.g., Point Grey’s Bumblebee®).

The reference features are calculated from an object
recognition module. In this paper, a clustering object
detection system is used, which segments objects of
[18]. The
determined 3D object cluster is further projected on the
2D image, and an initial tracking patch is calculated in the
form of an ROIL As will be explained, the initial patch is
tracked using an on-line boosting method. Parallel with
the patch-based tracker, an optical flow
determines the 2D-3D correspondences
consecutive frames. Finally, an occlusion detector
evaluates possible object occlusions.

interest on flat surfaces such as tables

system
between

3.1 2D Patch-Based Tracking

A patch is considered an ROI in the 2D image that is
being tracked by a specific tracker. This patch provides a
search area for the second tracker, which establishes the
2D-3D point correspondences and
transformation between consecutive poses of the object of
interest. For tracking the initial patch, an on-line boosting
learning technique has been implemented, as will be
further explained below.

estimates the

The boosting approach is a general framework used to
improve the accuracy of a certain machine learning
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algorithm. This is performed by combining a weighted
voting scheme using N hypotheses which have been
generated by a repeated training built around different
subsets of training data. A boosting classifier is
composed of so-called weak and strong learners, or
classifiers:

e  Weak learner: has to perform only slightly better
than that 1is, its
classification error has to be slightly smaller than
50%. The hypothesis hyeq, is obtained from a
learning algorithm.

e Strong learner: from a set of N weak learners, a
strong learner, or classifier, is obtained as a linear
combination of weak learners:

random guessing, overall

pstrong %) = sign(conf (x)), @)

where x is a data sample.

The conf(-) operator is a confidence measure that
provides the classification precision of the boosting
learner:

conf (x) = Xn=q @y - hy** (%) ®)
where a, is the assigned weight:
a4y =3In (1;) )

The basic boosting classification algorithm works as
follows. Given a set of training samples:

X = {Xu v (X2, ¥2)s o X, y1) | X € R™,y; € {=1,+1}3, (10)

where L is the number of training samples, with positive
+1 and negative —1 labels, and an initially uniform
distribution over the examples:

1

p(x) =1, (11)
A weak learner hy is trained based on p(x). Based on
the error e, the weak classifier hye is assigned a weight

a,. p(x) is updated as the probability of the misclassified
samples increases. If a sample is correctly classified, the
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corresponding weight is decreased, such that the
algorithm will focus on difficult samples. This procedure
is repeated until the algorithm converges on a certain
stopping criterion.

In the case dealt with in this paper, which concerns on-
line boosting, the initial training set is composed only of
an initial set of RGB-D frames. From these first frames, an
initial training set composed of a series of Haar features is
built. Further, the classifier is trained on-line by
redetecting the tracked features.

At the 2D image level, the on-line boosting performances
have been improved using a classical particle filtering
framework [20]. In our experiments we have used a non-
linear motion model governed by a set of 200 particles
and a constant acceleration of the object.

The boosting tracking architecture provides a 2D ROI in
the RGB image, which can be used to track the 3D pose of
an object of interest. As will be further detailed below,
this pose is obtained from a Lucas-Kanade (LK) optical
flow estimation system [21].

3.2 Optical Flow for 3D Object Pose Estimation

The 3D pose of the reference point cloud is calculated
based on the 2D ROI obtained from the boosting method
and the available 3D point cloud data. 2D point features
from the ROI are calculated based on the LK point
tracking method [22], as shown in Figure 4. The 2D points
used in LK tracking are extracted through the Harris
corner detector, followed by correspondence matching
using a traditional cross-correlation similarity measure. In
order to account for larger motions of the object, a
pyramid-based segmentation is used.

Figure 4. LK tracking displayed as blue lines between two
consecutive feature points. The two trackers are shown as red
(patch-based tracking) and yellow (LK tracking) rectangles (best
viewed in colour).

For each tracked 2D point in the image, a corresponding
3D point in the point cloud data is available, that is, there
exists a direct 2D to 3D correspondence between the
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points obtained from the optical flow and the 3D point
available in the point cloud delivered by the RGB-D
system. Keeping this in mind, the consecutive 3D pose of
the reference point features P..; is determined using a
Singular  Value  Decomposition — (SVD)
transformation method.

rigid  body

3.3 Occlusion Detection

One of the main components of the proposed 2D-3D
tracker is the occlusion detection system. Its goal is to
restart the tracker in case certain obstacles occlude the
object of interest. In order to detect occlusions in real
time, the ray-casting approach has been used. This means
the reference point features P,..f are reprojected at every
frame, based on the depth information available from the
RGB-D sensor. The obtained 2D reprojections are used to
search the current point cloud P; for occlusions, that is, if
a point in P; has a depth smaller than its correspondence
in P, that specific point in the tracked cloud is
occluded. An example of occlusion detection can be seen
in Figure 5. An occlusion is considered to have taken
place if the number of detected point occlusions exceeds a
specific threshold value.

B

Figure 5. Occlusion detection. Orange points: reprojection of the
tracked point features. Blue points: occlusion points coming from
the intersection with the robotic arm (best viewed in colour).

The experiments considered two types of occlusion:
objects occluded by other objects and the occlusion of an
object of interest by the manipulator arm. In the second
case, the major occlusion is produced by the gripper of
the robotic arm. Since the occlusion detection system is
based on ray-casting, it can be stated that the detection is
invariant to the shape of the tracked object or of the
objects present in the scene.

4. Visual Pipeline and Experimental Results

The processing pipeline for the proposed tracking system
is implemented within the Robotic Operating System (ROS)
framework. The input to the tracking module represents a
real-world metric-registered point cloud together with its
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RGB image correspondence. The processing pipeline
within ROS is illustrated in Figure 6.

Object
Cluster
Extraction

Publish 6-
DoF Object
Pose

Object
Tracking

Figure 6. Object tracking loop implementation within the ROS
operating system.

The evaluation of the overall visual tracking system is
performed with respect to the real 3D poses of the objects
of interest. Although a lot of 2D image-based object
tracking methods exist, the literature is relatively scarce
on 3D object trackers, which are a mandatory
requirement for service robots operating in uncontrolled
real-world conditions. One of the most reliable 3D object
tracking systems, which relies only on 2D image
information, is the ARToolKit library [23], against which
the collaborative tracker presented in this paper has been
evaluated.

The real 3D positions and orientations of the objects of
interest were manually determined using the following
setup. On the imaged scene, a visual marker, considered
to be the ground truth information, was installed in such
a way that the poses of the objects could be easily
measured with respect to the marker. The 3D pose of the
marker was detected using the ARToolKit library, which
provides subpixel accuracy estimation of the marker’s
location with an average error of approx. 5 mm [23]. By
calculating the marker’'s 3D pose, a ground truth
reference value for camera position and orientation
estimation could be obtained using the inverse of the
marker’s pose matrix. Further, the positions of the
object’s features were calculated using the proposed
system. Both results, ie., the 2D and 3D poses, were
compared to the ground truth data provided by the
ARToolKit marker. The 2D image marker position was
calculated using its reprojection in the 2D image plane.
As can be seen from Figure 7, the 2D and 3D position
errors are within a tolerable range. The statistical analysis
of the results is summarized in Table 1. It is important to
emphasize here that the ARToolKit tracker was
considered to be a reference value, or ground truth,
against which the proposed approach was measured. In
many situations, the classical marker-based approach
fails to deliver proper pose estimation because of
different lighting and surface reflection phenomena.
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Figure 7. Variations in the calculated 2D and 3D poses with

respect to the reference ARToolKit marker (best viewed in
colour).

x[px] | y[px] | X[m] | Y[m] | Z[m]
Max. err. 14 10 0.0967 | 0.0988 | 0.0958
Mean 6.6818 | 6.4091 | 0.0281 | 0.0350 | 0.0459
Std.dev. | 3.3436 | 25196 | 0.0253 | 0.0339 | 0.0358

Table 1. Statistical results of errors between the proposed and
the ARToolKit marker based 3D tracking system.

We have considered a processing cycle to begin with
RGB-D data acquisition and end with occlusion detection.
In the experimental setup, a calibrated MS Kinect®
structured light sensor is used to acquire a sequence of
300 indoor images. The average computational time
needed by a processing cycle is just over 400 ms, which is
low enough to consider the proposed system as a real-
time one for the considered case of object manipulation in
domestic environments. The implemented tracking
architecture has been tested on a typical portable
computer running a 64-bit UNIX operating system on an
Intel® i3 dual core CPU, each processor having a 2.40GHz
clock speed.

Throughout the object handling routine, the required
tracking accuracy is
manipulative task and the configuration of the robot. In
particular, the wider the opening angle of the gripper and
the higher the number of degrees of freedom of the
manipulator arm, the lower the tracking accuracy. In the
presented experiments, a tracking error lower then 0.01m
was required.

strictly dependent on the

www.intechopen.com



5. Conclusions

In this paper, a 2D-3D object features tracking system has
been proposed. It has been proven to stabilize mobile
manipulation and provide accuracy in tracking rigid
household objects during robotic handling. The proposed
approach has been built around a collaborative tracking
framework which fuses information from more available
trackers. As future work, the author will consider the
extension of the collaborative framework with new state-
of-the-art trackers in order to improve the accuracy of the
proposed system. Also, the speed enhancement of the
proposed system using state-of-the-art parallel processing
equipment, such as FPGAs and GPUs,
significantly decrease the processing time.

would
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